Системы заземления TN-S, TN-C, TNC-S, TT, IT

Содержание
  1. Преимущества и недостатки изолированной нейтрали
  2. Изолированная нейтраль
  3. Устройство сетей с голухозаземленной нейтралью
  4. Технические особенности
  5. Принцип работы глухозаземленной нейтрали
  6. Плюсы и минусы способа
  7. Объяснение для чайников
  8. Защита людей от поражения током в сети с глухозаземленной нейтралью
  9. Система с изолированным нейтральным проводом
  10. Виды систем искусственного заземления
  11. Системы с изоляцией от земли
  12. Требования ПУЭ
  13. Оборудование и средства для измерения сопротивления заземления
  14. Эффективно-заземлённая нейтраль | Электротехнический журнал
  15. Недостатки
  16. Особенности выполнения эффективно заземлённой нейтрали
  17. Смотри также
  18. Примечания
  19. Системы TN
  20. Система с нулевым и расчлененным рабочим проводником
  21. Система c проводом PEN и двумя нулями
  22. Система TN-S
  23. Виды систем заземления
  24. Требования к заземляющим устройствам
  25. Резистор и напряжение 110 кВ и выше: как исполнена нулевая точка?

Преимущества и недостатки изолированной нейтрали

Сегодня в электроустановках используется два защитных механизма — изолированная и глухозаземленная нейтраль. Главное преимущество заключается в отсутствии необходимости экстренного отключения первого однофазного замыкания на землю. Также следует помнить, что в области повреждения электросети создается небольшой ток, но это справедливо только при низкой токовой емкости на землю. Однако есть несколько недостатков, из-за которых изолированная нейтраль используется сравнительно редко:

  • Возможно появление перемежающегося дугового напряжения.
  • Не исключается вероятность появления большего количества повреждений по причине пробоя изоляции проводников в местах появления дугового перенапряжения.
  • Все электрооборудование необходимо изолировать на линейное напряжение относительно земли.
  • Воздействие дугового перенапряжения на изоляцию носит продолжительный характер.
  • Часто возникают сложности с обнаружением мест повреждений.
  • При однофазном замыкании правильная работа систем релейной защиты не может быть гарантирована.

Все эти недостатки полностью нивелируют преимущества такого способа заземления нейтрали. В то же время этот метод защиты в некоторых ситуациях продолжает оставаться эффективным и не противоречит нормам ПУЭ.

Например, изолированная нейтраль может стать хорошим решением для защиты высоковольтных линий, так как позволяет избежать аварийного отключения. В свою очередь, требованиям защиты сетей конченого потребителя электроэнергии он не удовлетворяет.

Изолированная нейтраль

Изолированная нейтраль нашла достаточно широкое применение в отечественных энергетических системах. Данный способ заземления применяется для генераторов или трансформаторов. В этом случае их нейтральные точки не соединяются с заземляющим контуром. В распределительных сетях на 6-10 киловольт нейтральной точки может не быть вообще, поскольку соединение трансформаторных обмоток выполняется методом треугольника.

Изолированная и глухозаземленная нейтраль

В соответствии с ПУЭ, режим изолированной нейтрали может быть ограничен емкостным током, представляющим собой ток однофазного замыкания на землю сети. Его компенсация с помощью дугогасящих реакторах предусматривается при следующих значениях:

  • Ток свыше 30 ампер, напряжение 3-6 киловольт;
  • Ток свыше 20 ампер, напряжение 10 киловольт;
  • Ток свыше 15 ампер, напряжение 15-20 киловольт;
  • Ток свыше 10 ампер, напряжение 3-20 киловольт, с металлическими и железобетонными опорами воздушных ЛЭП
  • Все электрические сети с напряжением 35 киловольт.
  • В блоках «генератор-трансформатор» при токе 5 ампер и генераторном напряжении 6-20 киловольт.

Компенсация тока замыкания на землю может быть заменена резистивным заземлением нейтрали с помощью резистора. В этом случае алгоритм действия релейной защиты будет изменен. Впервые заземление в режиме изолированной нейтрали было применено в электроустановках со средним значением напряжения.

Устройство сетей с голухозаземленной нейтралью

Как видно из рисунка 2, характерной особенностью электросетей TN типа является заземление нейтрали. Заметим, что в данном случае речь идет не о защитном заземлении, а о рабочем соединении между нейтралью и заземляющим контуром. Согласно действующим нормам, максимальное сопротивление такого соединения — 4-е Ома (для сетей 0,4 кВ). При этом нулевой провод, идущий от глухозаземленной средней точки, должен сохранять свою целостность, то есть, не коммутироваться и не оборудоваться защитными устройствами, например, предохранителями или автоматическими выключателями.

В ВЛ до 1-го кВ, используемых в системах с глухозаземленной нейтралью, нулевые провода прокладываются на опорах, как и фазные. В местах, где делается отвод от ЛЭП, а также через каждые 200,0 метров магистрали, положено повторно заземлять нулевые линии.

Пример устройства сети TN-C-S
Пример устройства сети TN-C-S

Если от трансформаторных подстанций отводятся кабели к потребителю, то при использовании схемы с глухозаземленной нейтралью, длина такой магистрали не может превышать 200,0 метров. На вводных РУ также следует подключать шину РЕ к контуру заземления, что касается нулевого провода, то необходимость в его подключении к «земле» зависит от схемы исполнения.

Технические особенности

В данной системе, где используется общая средняя точка, помимо межфазного присутствует и фазное напряжение. Последнее образуется между рабочим нулем и линейными проводами. Наглядно отличие первого от второго продемонстрировано ниже.

Разница между фазным и линейным напряжением
Разница между фазным и линейным напряжением

Разность потенциалов UF1, UF2 и UF3 принято называть фазными, а величины UL1, UL2 и UL3 – линейными или межфазными. Характерно, что UL превышает UF примерно в 1,72 раза.

В идеально сбалансированной сети трехфазного электрического тока должны выполняться поддерживаться следующие соотношения:

UF1= UF2=UF3;

UL1=UL2=UL3.

На практике добиться такого результата невозможно по ряду причин, например из-за неравномерной нагрузки, токов утечки, плохой изоляции фазных проводников и т.д. Когда нейтраль заземлена, дисбаланс линейных и фазных характеристик энергосистемы существенно снижается, то есть, рабочий ноль позволяет выравнивать потенциалы.

Обрыв нулевого провода считается серьезной аварией, которая с большой вероятностью приведет к нарушению симметрии нагрузки, более известной под термином «перекос фаз». В таких случаях в сетях однофазных потребителей произойдет резкое увеличение амплитуды электрического тока, что с большой вероятностью выведет из строя оборудование, рассчитанное на напряжение 220 В. Получить более подробную информацию о перекосе фаз и способах защиты от него, можно на страницах нашего сайта.

Принцип работы глухозаземленной нейтрали

Сначала необходимо понять, что является определением понятия глухозаземленная нейтраль. Согласно ПУЭ этот способ предполагает прямое соединение нейтрали трансформатора с заземляющим элементом. В электротехнике такой способ заземления принято называть рабочим. Также необходимо помнить, что в электроустановках, рассчитанных на напряжение 220−380 вольт, сопротивление заземляющих элементов не должно превышать показатель в 4 Ом.

Принцип действия глухозаземленной нейтрали можно продемонстрировать на примере трехпроводной электроцепи, соединяющей источник энергии с жилым домом. При ее создании нейтраль просто распределяется по щитку, и к ней подключаются все заземляющие контуры потребителей. Такая цепь не предполагает наличия различных устройств, которые могут нарушить ее единство.

Если предположить, что по причине частых вибраций в холодильнике от места крепления отсоединился фазный проводник и вступил в контакт с корпусом, то такая ситуация является аварийной. Все это приводит к появлению короткого замыкания и стремительному увеличению силы тока. Однако автоматический выключатель быстро справляется с поставленной задачей и размыкает цепь. Если человек случайно дотронется до провода, то поражения током не произойдет, ведь сопротивление R0 будет меньше в сравнении с возникающим при прохождении через человеческое тело.

Плюсы и минусы способа

Глухозаземленная нейтраль имеет больше преимуществ и меньше недостатков в сравнении с изолированной. Среди преимуществ можно отметить:

  • Появляется возможность использовать оборудование с таким уровнем изоляции, который был изначально запланирован.
  • Отпадает необходимость в использовании специальных защитных схем.
  • Эффективно справляется с подавлением перенапряжения.

Однако это неидеальный способ и ему присущи некоторые недостатки. Начать стоит с того, что риски получения повреждений от удара электротоком сохраняются, хотя их и можно считать незначительными. Кроме этого, из-за большого замыкания тока на землю могут появиться помехи и даже повреждения сети.

Объяснение для чайников

Понижающая подстанция, в которой установлен трансформатор, имеет свой контур заземления. Он соединен между собой стальными шинами и прутами, в один заземляющий контур. К потребителям в электрический щиток от подстанции прокладывается кабель, который содержит четыре жилы. Если потребителю необходимо питание от трёхфазной цепи 380 Вольт, то подключаться необходимо ко всем жилам. В однофазное сети 220 В питание будет осуществляется от нулевого провода и от одной из фаз. Защита людей в однофазных и трехфазных цепях, если нет системы заземления, должна осуществляется за счёт специальных устройств защитного отключения (УЗО), которые срабатывают при небольшой утечке на ноль, при этом отключают надёжно потребителя от сети.

Защита людей от поражения током в сети с глухозаземленной нейтралью

Теперь переходим к непосредственному объяснению того, зачем делается заземление нейтрали трансформатора и как это работает.

Теоретически для любой точки электросети потенциал нулевого проводника относительно земли равен нулю. Контур повторного заземления у потребителя делает это равенство еще более прочным, особенно, если до питающей подстанции далеко.

Поражение людей электрическим током возможно при случаях:

  1. Нарушения изоляции внутри электрооборудования, когда его корпус оказывается под напряжением;
  2. Нарушения изоляции проводов и кабелей, когда под напряжением окажутся металлоконструкции, по которым они проложены;
  3. Нарушения изоляции токоведущих частей или поломки электрооборудования, когда на поверхности земли или пола образуются зоны потенциалов, опасных для проходящих мимо людей (шаговое напряжение);
  4. Ошибки при ремонте и эксплуатации, приводящие к непосредственному прикосновению к узлам электрооборудования, находящимся под фазным напряжением.

Для исключения ситуаций, описанных пунктами 1 и 2, все корпуса электроприборов и металлоконструкции соединяются с контуром заземления. На предприятиях для этого по периметру помещений с электрооборудованием прокладывается стальная полоса, к которой присоединяются все металлические части. Так их потенциал насильственно приравнивается к потенциалу земли.

При возникновении замыкания фазных проводников на заземленный таким образом корпус, даже при отказе срабатывания защиты, ток замыкания пойдет по заземляющим проводникам к контуру заземления. Сопротивление относительно земли тела человека, который прикоснется к аварийному корпусу, намного больше, чем сопротивление между землей и корпусом. Поэтому через тело человека не пойдет ток, превышающий опасные значения.

Правила безопасности сетях с глухозаземленной нейтралью

Второй принцип защиты – быстрое отключение аварийного режима. Ведь ток пойдет не просто к контуру, он пойдет по направлению к нейтрали трансформатора. Организуется короткое замыкание, ток которого имеет большое значение. На него успешно среагирует защитная аппаратура: предохранитель или автоматический выключатель. Авария будет ликвидирована почти мгновенно, поврежденный участок отключится.

Теперь перейдем к пункту 3 и защите от напряжения шага. К лежащему на мокром бетонном полу оголенному проводу подходить опасно. Опасный для жизни потенциал расходится от него волнами, как круги на воде. Если ноги окажутся на участках пола с разными потенциалами, можно также получить удар электротоком.

Если в помещении такая ситуация возможна, внутри пола устраивается система выравнивания потенциалов: замуровывается металлическая сетка. Сетка в нескольких местах соединяется с контуром заземления. Таким образом, ноги прохожего оказываются зашунтированы металлическими прутьями решетки, большая часть тока пойдет мимо него.

Система с изолированным нейтральным проводом

Система IT

В большинстве случаев, в такой конструкции, нейтраль изолируют от земли, или создают необходимое зануление IT, используя устройство со значительным сопротивлением.

В домашних условиях, устройства такого типа не нашли применения, они практически не используются, но позволяют их применять для питания специальных устройств, для которых необходима безопасность и максимальная стабильность при работе, к примеру, в лабораториях и лечебных учреждениях.

Виды систем искусственного заземления

В классификации систем заземления есть естественные и искусственные типы заземления.

Системы заземления искусственного типа:

  • TN-S;
  • TN-C;
  • TNC-S;
  • TT;
  • IT.

Виды заземления — расшифровка названия:

  • T — заземление;
  • N — подсоединение проводника к нейтрали;
  • I -изолирование;
  • C — объединение опций функционального и нулевого провода защитного типа;
  • S — раздельное использование проводов.

Многих людей интересует вопрос о том, что называют рабочим заземлением. По-другому его называют функциональным. Ответ на данный вопрос даёт пункт 1.7.30 ПУЭ. Это заземлерие точек токоведущих частей электрической установки. Применяется для обеспечения функционирования электрических приборов или установок, а не в защитных целях.

Также многих волнует вопрос о том, а что такое защитное заземление. Это процесс заземления устройств с целью обеспечения электробезопасности.

Системы с изоляцией от земли

Работа высоковольтных сетей с эффективно заземленной нейтралью изоляционного типа является распространенной в различных регионах России. В этом случае нейтральная точка в трансформаторе или генераторе с трехфазной обмоткой не заземляется. Популярность подобного варианта включения нейтрали объясняется тем, что замыкание на землю фазы не является коротким, т. к. попросту отсутствует взаимосвязь с грунтом.

Особенность же заключается в том, что ВЛ в таком аварийном режиме работает без существенных поломок на протяжении нескольких часов. Среди достоинств такой схемы отмечено также наличие малых токов в точке замыкания ОЗЗ (одна фаза на землю). Объясняется такой принцип небольшой емкостью сети по отношению к грунту.

Важно! Подобный тип включения имеет токи ОЗЗ на порядок ниже в сравнении с межфазными замыканиями. Это очередное преимущество обозначенных сетей.

Отсутствует необходимость во включении защитных быстродействующих устройств от ОЗЗ, в результате чего снижаются затраты при эксплуатации систем. Не обойтись и без недостатков при подключении:

  1. В некоторых случаях создаются перенапряжения, имеющие дуговой эффект даже при небольших токах в месте заземления одной фазы.
  2. Существует вероятность выхода из строя высоковольтных, кабельных установок вследствие повреждения изоляционного слоя.
  3. Ведется повышенный учет напряжений (380 В). При необходимости линейная электрическая техника подвергается тщательной изоляции.
  4. Сложное нахождение и определение конкретной точки повреждения.

Вам это будет интересно СИП: расшифровка и характеристики кабеля с изоляцией и без

Выбирая описанный тип подсоединения нейтральной точки, следует учитывать все его преимущества и недостатки, тщательно продумать последствия от возможных аварийных ситуаций.

Требования ПУЭ

Сегодня в электротехнике достаточно активно используются оба способа — глухозаземленная и изолированная нейтраль. Различия между ними в первую очередь заключаются в способе подключения трансформатора к заземляющему элементу. Вся необходимая информация по выбору способа защиты изложена в ПУЭ.

Если говорить о бытовой сети на 220 вольт, то место заземления можно расположить около трансформатора, и для решения поставленной задачи применяется отдельный проводник. Это позволит уменьшить путь прохождения тока и одновременно сократить расходы. В загородном доме допускается соединение с металлическим каркасом строения, расположенным в глубине земли.

Если же заземляющим элементом является фундамент, то к его арматуре необходимо выполнить подключение минимум в двух точках.

Оборудование и средства для измерения сопротивления заземления

Основным прибором, которым производятся измерения сопротивления растекающимся токам, является измеритель заземления ИС-10. Данный прибор работает в пяти диапазонах измерения, что объясняет его широкое применение. Минимальным диапазоном является сопротивление от 0,01 до 9,99 Ом, затем следуют диапазоны 0,1–99,9 Ома, 1–999 Ом, 0,01–9,99 кОма. Максимальное сопротивление, определяемое этим прибором, составляет диапазон от 1 до 999 мОм. В сочетании с прибором для измерений используются выносные токовые и потенциальные электроды.

Следует отметить, что измерительная схема заземления собирается по строгим правилам – соединительные проводники прибора, в первую очередь, к токовым и потенциальным электродам, затем к прибору и в последнюю – к заземлителю.

Эффективно-заземлённая нейтраль | Электротехнический журнал

Эффективно-заземлённая нейтраль (трех-фазной электроустановки) — нейтраль трёхфазной электрической сети выше 1000В (1 кВ и выше), коэффициент замыкания на землю в которой не более Кзам = 1,4.

Термин «глухозаземлённая нейтраль» в сетях выше 1000В в данный момент не применяется. Электроустановки, в которых нейтраль соединяется с заземляющим устройством непосредственно, также относятся к электроустановкам с эффективно-заземлённой нейтралью.

Коэффициент замыкания на землю в трехфазной электрической сети — это отношение разности потенциалов между неповреждённой фазой и землёй в точке замыкания на землю другой или двух других фаз к разности потенциалов между фазой и землёй в этой точке до замыкания.

Иначе говоря при замыкании фазы в сети с изолированной нейтралью напряжение между землёй и неповреждёнными фазами возрастает до линейного — примерно в 1,73 раза; в сети с эффективно заземлённой нейтралью напряжение на неповреждённых фазах относительно земли возрастёт не более чем в 1,4 раза. Это особенно важно для сетей высокого напряжения, что уменьшает количество изоляции при изготовлении сетей и аппаратов, удешевляя их производство. Согласно рекомендации МЭК к сетям с эффективно-заземлённой нейтралью относят сети высокого и сверхвысокого напряжения, нейтрали которых соединены с землёй непосредственно или через небольшое активное сопротивление. В СССР и России сети с эффективно-заземлённой нейтралью — это сети напряжением 110 кВ и выше.

Недостатки

  • Возникновение больших токов короткого замыкания (ТКЗ) через заземлённые нейтрали трансформаторов при замыкании одной фазы на землю, что должно быть быстро устранено отключением от устройств релейной защиты. Большинство коротких замыканий на землю в сетях 110 кВ и выше относятся к самоустранимым и электроснабжение обычно восстанавливается АПВ.
  • Удорожание сооружения контура заземления, способного отводить большие токи к.з.
  • Значительный ток однофазного к.з., при большом количестве заземлённых нейтралей трансформаторов может превышать значение трёхфазного тока к.з. Для устранения этого вводят режим частично разземлённых нейтралей трансформаторов (часть трансформаторов 110-220 кВ работают с изолированной нейтралью: нулевые выводы трансформаторов присоединяются через разъединители, которые находятся в отключённом состоянии). Ещё одним из способов ограничения тока к.з. на землю-это заземление нейтралей трансформаторов через активные токоограничивающие сопротивления.

Особенности выполнения эффективно заземлённой нейтрали

Согласно ПТЭЭП максимально допустимая величина сопротивления заземляющего устройства для сетей с эффективно заземлённой нейтралью (для электроустановок выше 1000 В и с большим током замыкания на землю — свыше 500 А — каждого объекта) составляет 0,5 Ом с учётом естественного заземления (при сопротивлении искусственного заземляющего устройства — не более 1 Ом). Это вызвано необходимостью пропускания значительных токов при к.з. на землю, высоким и сверхвысоким напряжением сети, требованием ограничения напряжения между землёй и неповреждёнными фазами, а также возможностью появления при авариях высоких напряжений прикосновения, шаговых напряжений и опасных «выносов потенциалов» за территорию подстанции. Необходимость равномерности распределения потенциалов внутри подстанции и исключения появления шаговых напряжений на значительном удалении от подстанции исключается т.н. устройством выравнивания потенциалов, которое является составной частью заземляющего устройства для эффективно заземлённых нейтралей. Особые требования для заземляющих устройств с эффективно заземлёнными нейтралями создаёт значительные трудности для их расчёта и сооружения, делает их материалоёмкими, особенно для грунтов с высоким удельным сопротивлением (каменистые, скальные, песчаные грунты) и стеснёнными условиями сооружения.

Смотри также

Примечания

  1. ПУЭ — правила устройства электроустановок, издание 6-е и 7-е.
  2. ПТЭЭП — правила технической эксплуатации электроустановок потребителей.

Просмотров всего: 135, Просмотров за день: 1

www.el-info.ru


  • Эффективно заземленная нейтраль и глухозаземленная отличия

  • Испытания кабеля из сшитого полиэтилена 10 кв
  • Испытания кабеля из сшитого полиэтилена 10 кв
  • Плюсы и минусы тэц
  • Плюсы и минусы тэц
  • Разъединитель шинный 10 кв
  • Разъединитель шинный 10 кв
  • Разъединитель рндз
  • Разъединитель рндз

  • Протокол испытания кабеля сшитого полиэтилена

  • Протокол испытания кабеля сшитого полиэтилена

Системы TN

Такие конструкции отличаются наличием глухо заземленной нейтрали и подсоединением к ней всех способных проводить электроэнергию элементов сети.

Подключение к нейтрали производят используя нулевые проводники.

Электрошкафы, щиты и корпуса приборов, подключают к проводнику PEN. Выполняется это для создания короткого замыкания, при пробивании проводки на корпус, в результате чего, защитные автоматы обесточивают сеть, идущую на вышедший из строя участок сети, таким образом, предупреждая поражение током людей, находящихся поблизости.

Система с нулевым и расчлененным рабочим проводником

Система TN-S

Система TN-S для безопасности оборудована двумя, а не одним нулевым проводом, один из них служит как защитный провод, а второй используется в качестве нейтрального проводника, подключенного к глухо заземленной нейтрали. Эта конструкция сегодня является самой безопасной, способной эффективно защитить от удара электричеством.

Принцип работы этой конструкции состоит в том, что используют всего одну фазу для подачи рабочего напряжения и ноль.

Разводку производят проводом из трех жил, одна из которых служит как нуль и подключается к вводному проводу.

Система c проводом PEN и двумя нулями

Система TN и TN-C-S

Здесь характерно использование в определенном месте оборудования, соединенного с нулевым проводом, расщепляющимся на два проводника: PE и N, для последующего заземления оборудования.

Для бесперебойной работы, система TN-C-S после места раздвоения, оборудуется еще одним заземлителем.

Положительные свойства этой системы:

  1. Простой переход на нее во время ремонта старых домов.
  2. Простая конструкция защиты от молнии.
  3. Возможность создания защиты проводки простыми автоматами от замыкания.

Минусы этой системы:

  1. Риск перегорания нулевого провода вне здания, что грозит пробоем корпусов из металла электротоком.
  2. Нужда в использовании оборудования для уравнивания потенциалов.
  3. Сложность в создании действенной защиты внегородской черты.

Для частных, хозяйственных строений, ПУЭ советуют использовать совершенно другую систему — TT.

( 2 оценки, среднее 4.5 из 5 )

Система TN-S

Самые дорогостоящие в реализации, но самые удобные и надёжные системы заземления — это системы TN-S, которые монтируются вместе с трансформаторами с глухозаземлённой нейтралью.

Для системы TN-S заземляющий и нулевой провода соединяются в трансформаторной подстанции. На всем протяжении больше эти проводники не связаны между собой.

tn-s система заземления

К потребителю, будь то квартира или дом, приходит два независимых друг от друга проводника нулевой рабочий N и нулевой защитный PE.

Для бОльшей надёжности заземляющий провод РЕ может соединяться с контуром заземления на вводе в здание.

Это самый простой в эксплуатации тип защиты. При его монтаже отсутствуют высокие требования к контуру заземления здания.

Недостаток этой системы в необходимости вместо четырёх проводов (L1,L2,L3,РЕN) использовать пять, где пятым проводом является заземляющий PE, однако это перекрывается повышенной безопасностью эксплуатации. Поэтому новые воздушные и кабельные линии электропередач прокладываются пятижильными кабелями и проектируются по системе TN-S.

Виды систем заземления

Основным способом защиты от поражения электрическим током является применение одной из систем заземления. В главе 1.7 ПУЭ перечисляются пять типов таких устройств:

  • TN-C;
  • TN-C-S;
  • TN-S;
  • TT;
  • IT.

Любая из этих систем надёжно защищает людей в условиях городской квартиры или частного дома, но имеет свои конструктивные и защитные отличия.

Применение конкретного вида защиты в особых условиях регламентируется ПУЭ и связано с особенностями помещений и электроустановок.

системы заземления ПУЭ

Информация! Установка заземления обязательна во всех новых зданиях и желательна при ремонте старых сооружений.

Выбор системы заземления производится на стадии проектирования здания и электропроводки до начала монтажных работ.

Требования к заземляющим устройствам

Все устройства, использующиеся для заземления, должны соответствовать стандартам, утвержденным государством, строительным нормам и ПУЭ. Их задача – обеспечить безопасность людей, защиту электроустановок и режимы их эксплуатации.

Ни в коем случае не допускается последовательное соединение нескольких частей электроустановки заземляющими проводниками – каждой части должен соответствовать только один кабель заземления, имеющий диаметр сечения не меньший, чем указанный в ПУЭ. Заземляющие проводники, размещенные открыто, защищаются от воздействия агрессивной среды путем окраски их в черный цвет.

Техническое состояние устройств заземления и проверка заземления осуществляется методом осмотра невооруженным глазом видимой части устройства, осмотра с частичным вскрытием грунта и измерением параметров заземляющего устройства. Видимая часть устройства осматривается один раз каждые шесть месяцев.

Резистор и напряжение 110 кВ и выше: как исполнена нулевая точка?

Эффективно заземленная нейтраль в электрической сети

Эффективное заземление – это особый вид нулевого проводника, присоединенного к специализированному оборудования, который применяется в электроустановках выше 1 кВ. Для распределительных сетей используется вариант с заземлением через низкоомные резисторы, которые обеспечивают отключение линии при однофазном замыкании на землю без выдержки времени.

Линии высокого напряжения 110 кВ и выше также используют представленный тип нейтрали, что обеспечивает быстроту срабатывания защит. Для повышения чувствительности работы «релейки» у каждого силового трансформатора имеется специальное оборудование ЗОН. Одноколонковый заземлитель нейтрали обеспечивает также защиту от перегруза.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...