Схема подключения и назначение диодного моста

Содержание
  1. Устройство селенового выпрямителя
  2. Характеристика селиконового выпрямителя
  3. Синхронное выпрямление
  4. ,
  5. Активный выпрямитель — описание работы схемы
  6. Физические процессы
  7. Для схемы «Зарядное устройство для малогабаритных элементов»
  8. Трехфазная схема выпрямителя
  9. Обозначение диодного моста и схема подключения
  10. Принцип работы диодного моста
  11. Основные характеристики
  12. Для схемы «Ремонт зарядного устройства для MPEG4-плеера»
  13. Чем можно заменить диодный мост-сборку
  14. Преимущества двухполупериодного диодного моста
  15. Diotec
  16. Особенности видов напряжения
  17. Недостатки полного моста
  18. Схема простого выпрямителя
  19. Технические характеристики
  20. Как спаять и подключить
  21. Диодный мост
  22. Конструкции и характеристики прибора
  23. Схема подключения устройства
  24. Проверка на работоспособность
  25. Практическое применение
  26. Примеры схем с диодным мостом и их описание
  27. Силовые устройства
  28. Область применения и назначение
  29. Чем заменить диодный мост в генераторе
  30. Преимущества и недостатки
  31. Полупроводники Шоттки в современном мире
  32. Диодный мостик своими руками
  33. Схема 3-фазного частотника
  34. Групповая коммутация
  35. Пофазная коммутация
  36. Индивидуальная коммутация
  37. Расчёт мощности
  38. Как выбрать диоды для изготовления диодного моста?

Устройство селенового выпрямителя

Селеновые выпрямители состоят из алюминиевых или железных никелированных пластин толщиной 0,8—1‚5 мм, покрытых с одной стороны слоем селена, который наносится путем наплавления при температуре 250°С с последующим опрессовыванием для получения ровного слоя толщиной около 0,1 мм. Для снижения сопротивления запирающего слоя шайбы нагревают до 215°С и затем выдерживают в парах серы при температуре 150°С. После этого наносят слой катодного сплава, состоящего из:

  • кадмия
  • олова
  • висмута

.

Запорный слой селенового выпрямителя создается не при изготовлении, а в результате специальной электрической формовки под напряжением. В процессе формовки к пластине селенового выпрямителя подводят постоянное напряжение и постепенно повышают его так, чтобы обратный ток достиг 10 ма/кв.см.

Селеновый выпрямитель, бывший длительное время без употребления, необходимо формовать перед эксплуатацией, так как после длительного бездействия он теряет выпрямляющие свойства.

Наивысшая допустимая рабочая температура селеновых выпрямителей +750 С. Старение сопровождается повышением сопротивления в направлении прямого тока и ускоряется с повышением температуры. Срок службы селеновых выпрямителей колеблется от 3000 до 25000 часов. Пробой селеновой выпрямительной пластины происходит при 50—80 в и сопровождается расплавлением катодного сплава с образованием стекловидного селена. В месте пробоя стекловидный селен является электроизолирующим материалом. Поэтому после пробоя селеновый выпрямитель может работать, если пробой не привел к короткому замыканию.

Характеристика селиконового выпрямителя

Коэффициент полезного действия селеновых выпрямителей достигает 85%, падение напряжения на одной пластине в прямом направлении О,9——1,5 в, в обратном направлении— 15—30 8. Емкость одной пластины достигает 0,01—0,03 мкф/кв.см2 допустимая плотность прямого тока— 50 ма/смг, амплитуда испытательного напряжения на прочность — 50 в. Из селеновых пластин собирают столбики на различное напряжение и силу тока. В столбике пластины включены параллельно, последовательно или параллельно—последовательно в плечи, а плечи соединены обычно в мостиковые или двухполупериодные выпрямительные схемы.

Данные о характеристиках селеновых столбикахприведены в таблице.

Синхронное выпрямление

Известно, что в состав МОП-структуры входит паразитный диод, включенный параллельно полевому транзистору, поэтому полный мост можно получить при помощи четырех полевых транзисторов, как показано на рис. 2.

Мост на полевых транзисторах

Рис. 2. Мост на полевых транзисторах

Напряжение на контактах стандартного диода составляет 0,6…1 В, в зависимости от тока, протекающего через него, и технологии, с использованием которой диод изготовлен, и это является основной причиной потери мощности в мосте. Худший вариант возможен в случае использования только корпусного диода полевого транзистора, но если запуск этого транзистора осуществляется при помощи технологии синхронного выпрямления, корпусный диод пропускает только очень короткую часть сигнала, в зависимости от времени запаздывания управляемых полевых транзисторов, а основная часть синусоидального входного тока проходит через полевые транзисторы. Проведем простой эксперимент: рассмотрим двухволновый (полный) выпрямительный мост и предположим, что напряжение на контактах диода в режиме проводимости равно 0,6 В, сравним его с активным мостом, включающим четыре полевых транзистора с сопротивлением RDSON (при температуре 100°C) = 10 МОм. Средний выходной ток системы равен 5 A.

В таблице 1 приведено сравнение полных КПД двух решений.

Таблица 1. Сравнение потерь мощности между стандартным и активным входным мостом  

Расчет Расчетная потеря мощности, Вт Прим.
Диод 2 x VF x IAVG – RECT 6 Явно выше
МОП-транзисторы 2 x RDSon x I2 in – rms 0,6 Снижение на ~90%

,

— , , , .

— , («») . .

.

:

( ), , (.1 , ).

(.2 , , )


. 2. ) ( ), ) , )

:

, (.3).


. 3.

. . 4.


. 4.

, , . 5.


. 5.

,


. 6.

, ( ). , , — . , , , , . . , , , , .


. 7.

, :

  • ( , , );
  • ;
  • (, , , , set-top-box, , , .), , AC/DC-DC/DC ;
  • ( , , , .), .

Активный выпрямитель — описание работы схемы

Схема выделяет модуль входного напряжения и тем самым работает как двухполупериодный выпрямитель. Она состоит из диодного ограничителя, реализованного на ОУ1 и двухвходового суммирующего усилителя на ОУ2.

Когда входное напряжение Uвх имеет отрицательную полярность, верхний диод находится в непроводящем состоянии. Последовательно включенные сопротивления R и R/2 не работают, поскольку они включены между потенциально заземленными входами усилителей ОУ1 и ОУ2 . Выходной суммирующий усилитель действует как инвертор с единичным усилением, и:

Uвых = − Uвх при Uвх < 0

Входное напряжение положительной полярности Uвх преобразуется ограничителем в напряжение отрицательной полярности U=−Uвх , и затем оба напряжения складываются так, что на выходе суммирующего усилителя появляется напряжение:

Uвых = − Uвх − 2U = + Uвх при Uвх > 0

Оба случая можно формально объединить, записав как:

Uвых = |Uвх|

Поэтому такой выпрямитель и называется также схемой выделения модуля переменного сигнала

Графически зависимость выпрямленного выходного напряжения от переменного входного можно изобразить в следующем виде:

Данная схема очень пригодилась, когда появилась необходимость выпрямлять переменное напряжение частотой 150кГц с последующей отправкой на АЦП микроконтроллера для передачи на ПК. Выпрямитель стал частью установки по изучению релаксационных свойств МДП структур

Выбор дета

Характеристики данной схемы определяются применяемыми деталями.

В качестве ОУ была выбрана микросхема LM833, позволяющая работать на частотах вплоть до 15МГц. Такой запас по частотной полосе может показаться даже излишним, однако он гарантирует минимум фазовых искажений до нескольких МГц. Использовалось напряжение питания ±15В, которое было стабилизированно посредством L7815 и L7915.

В качестве диодов использовались быстродействующие Диоды Шоттки (4148).

Величина R была выбрана 14.51 кОм, ввиду наличия данного номинала, однако никто не мешает выбрать ее равной как 10кОм так и 20-30кОм.

Для исключения внесения дополнительной ошибки использовались прецизионные резисторы типа (С2-13). Данные резисторы имеют стеклянную изоляцию покрытую дополнительным слоем керамики, что обеспечивает значительную температурную стабильность при измерениях. Ошибка номиналов резисторов +-0.5%.

Физические процессы

Виды диодных мостовВ основе принципа работы диодного моста лежит способность p-n перехода пропускать ток только в одном направлении. Под p-n переходом понимается контакт двух полупроводников с различным типом проводимости. Граница, разделяющая области, характеризуется шириной запрещённой зоны, препятствующей прохождению зарядов. С одной её стороны находится p область, в которой основными носителями считаются дырки (положительный заряд), а с другой n область, где основные носители электроны (отрицательный заряд).

Находясь изолированно друг от друга, в каждой области элементарные частички совершают беспорядочные тепловые колебания, из-за чего их выделяемая энергия компенсируется и результирующий ток равен нулю. При соприкосновении этих областей возникают диффузионные токи, вызванные притягиванием зарядов друг к другу. В итоге частички сталкиваются и рекомбинируют (исчезают). В зоне соприкосновения происходит обеднение носителей, и их движение прекращается. Устанавливается состояние динамического равновесия.

При приложении к p-n переходу электрического поля картина меняется. При прямом смещении, то есть таком, когда положительный полюс источника питания подключается к p области, а отрицательный к n области, происходит введение основных носителей в области. Из-за этого ширина запрещённой зоны уменьшается, и частички свободно начинают проходить через барьер, образуя ток. Если же полярность источника питания изменить, то произойдёт ещё большее обеднение слоёв, в итоге барьер увеличится, и ток не возникнет.

Схема диодного моста

Таким образом, в зависимости от полярности сигнала, приложенного к переходу, ширина запрещённой зоны увеличивается или уменьшается. Если на элемент, в основе работы которого используется p-n переход подать переменный сигнал, то в результате к нему попеременно будет прикладываться прямое и обратное напряжение. Соответственно, часть сигнала он будет задерживать, а часть пропускать.

Если же взять измерительный прибор, умеющий показывать форму сигнала (осциллограф), то на выходе радиоэлемента можно будет увидеть импульсы, длительность которых определяется периодом полуволны. Именно поэтому диод и называется выпрямительным, хотя к нему больше подходит название импульсный преобразователь. То есть устройство, преобразующее переменный сигнал в пачку импульсов.

Для схемы «Зарядное устройство для малогабаритных элементов»

ЭлектропитаниеЗарядное устройство для малогабаритных элементовВ. БОНДАРЕВ, А. РУКАВИШНИКОВ г. МоскваМалогабаритные элементы СЦ-21, СЦ-31 и другие используются, например, в современных электронных наручных часах. Для их подзарядки и частичного восстановления работоспособности, а значит, продления срока службы, можно применить предлагаемое зарядное устройство (рис. 1). Оно обеспечивает ток зарядки 12 мА, достаточный для «обновления» элемента через 1,5…3 часа после подключения к устройству. рис. 1 На диодной матрице VD1 выполнен выпрямитель, на который подается сетевое напряжение через ограничительный резистор R1 и конденсатор С1. Резистор R2 способствует разрядке конденсатора после отключения устройства

от сети. На выходе выпрямителя стоит сглаживающий конденсатор С2 и стабилитрон VD2, ограничивающий выпрямленное напряжение на уровне 6,8 В. Далее следуют источник

зарядного тока, выполненный на резисторах R3, R4 и транзисторах VT1-VT3, и сигнализатор окончания зарядки, состоящий из транзистора VT4 и светодиода HL).Как только напряжение на заряжаемом элементе возрастет до 2,2 В, часть коллекторного тока транзистора VT3 потечет через цепь индикации. Регулируемый аналог динистора на транзисторах Зажжется светодиод HL1 и просигнализирует об окончании цикла зарядки.Вместо транзисторов VT1, VT2 можно использовать два последовательно включенных диода с прямым напряжением 0,6 В и обратным напряжением более 20 В каждый, вместо VT4 — один такой диод, а вместо диодной матрицы — любые

диоды на обратное напряжение не менее 20 В и выпрямленный ток более 15 мА. Светодиод может быть любой прочий, с постоянным прямым напряжением приблизительно 1,6 В. Конденсатор С1 — бумажный, на номинальное напряжение не ниже 400 В, оксидиый конденсатор С2-К73-17 (можно К50-6 на напряжение не ниже 15 В).Детали смонт…

Трехфазная схема выпрямителя

Большинство промышленных источников питания для электродвигателей и сварочных применений используют трехфазное напряжение AC. Это означает, что устройство для этих цепей должен использовать трехфазный мост, который имеет шесть диодов для обеспечения полноволнового выпрямления (два диода для каждой линии трёх фаз). На этом рисунке показана электрическая трехфазная мостовая схема выпрямления.

На диаграмме вторичная обмотка трехфазного трансформатора на диоде устройства. 1D, 3D и 5D соединены вместе, чтобы обеспечить общую точку для отрицательного вывода DC выходной мощности. 2D, 4D и 6D соединены, чтобы обеспечить общую точку для постоянного положительного вывода выходной мощности.

Выпрямитель трехфазный

Электронная схема трехфазного мостового выпрямителя, где он соединён со вторичной обмоткой трехфазного трансформатора. Трехфазные входные синусоидальные волны (б). Шесть полуволн для выхода DC. Хорошим правилом для определения соединений на диодных устройствах является то, что входное напряжение (U) переменного тока будет подключено к мосту, где соединяются анод и катод любых двух диодов.

Так как это происходит в двух точках моста, входное U не имеет определённую полярность. Положительный вывод для источника питания будет подключён к мосту, где два катода диодов соединены, а отрицательный вывод будет соединён с мостом и соединяются два анода диодов.

Трехфазный мостовой выпрямительПоскольку шесть полуволн перекрываются, напряжение DC не имеет шансов добраться до нулевой точки напряжения, таким образом, среднее выходное напряжение DC очень велико.

Трехфазный полноволновый мостовой выпрямитель используется там, где требуемое количество мощности DC велико, а эффективность трансформатора должна быть высокой. Поскольку выходные сигналы полуволн перекрываются, они обеспечивают низкий процент пульсаций.

В этой схеме выходная пульсация в шесть раз превышает входную частоту. Поскольку процент пульсаций низкий, выходное U (DC) можно использовать без большой фильтрации. Этот тип устройства совместим с трансформаторами, которые соединены звездой или треугольником.

Обозначение диодного моста и схема подключения

 Так как мост из диодов может быть построен по различным схемам, а элементов в нём содержится немного, то в большинстве случаев обозначение выпрямительного узла производят, просто рисуя его принципиальную схему. Если это неприемлемо – например, в случае построения блок-схемы – то мост указывается в виде символа, которым указывают любой преобразователь переменного напряжения в постоянное:

Блок схема диодного моста.

Литера «~» означает цепи переменного тока, символ «=» – цепи постоянного тока, а «+» и «-» – выходную полярность.

Если выпрямитель построен по классической мостовой схеме из 4 диодов, то допускается немного упрощенное изображение:

Упрощённое изображение диодного моста.

Подключается вход выпрямительного блока к выходным терминалам источника переменного тока (в большинстве случаев им служит понижающий трансформатор) без соблюдения полярности – любой выходной вывод подключается к любому входному. Выход моста подключается к нагрузке. Она может требовать соблюдения полюсности (включая стабилизатор, сглаживающий фильтр), а может и не требовать.

Схема диодного моста с источником переменного напряжения.

Диодный мост может быть подключен к источнику постоянного напряжения. В этом случае получается схема защиты от непреднамеренной переполюсовки – при любом подключении входов моста к выходу блока питания, полярность напряжения на его выходе не изменится.

Принцип работы диодного моста

Понять, как мост выполняет свою задачу, можно, разобравшись в том, как ведёт себя отдельный диод. Изначально имеются только два провода с переменным напряжением (L и N). Оно имеет форму синусоиды (рис. а). Если в схему добавить один диод, то он будет пропускать только положительную полуволну (рис. б), если этот компонент развернуть, то отрицательную составляющую (рис. в). Такое напряжение уже не будет переменным. Всё же оно не годится для питания серьёзных электроприборов. В нём наблюдаются моменты, когда ток совсем отсутствует. Применение четырёх диодов позволит получить постоянное напряжение без всяких прерываний (рис. г). Трёхфазные мосты выпрямляют по такому же методу. Однако они делают это одновременно с тремя синусоидами.

Форма напряжения после моста

Форма напряжения после моста

Основные характеристики

Рассмотрим основные характеристики полупроводниковых диодов. Латинскими буквами приведено их обозначение в англоязычной технической документации (т.н. Datasheet):

  • Vrpm – пиковое или максимальное обратное напряжение. При превышении этого напряжения pn-переход необратимо разрушается.
  • Vr(rms) – среднее обратное напряжение. Нормальное для работы, то же что и Uобр в характеристиках отечественных компонентов.
  • Io – средний выпрямленный ток, то же что и Iпр у отечественных.
  • Ifsm – пиковый выпрямленный ток.
  • Vfm – падение напряжения в прямом смещении (в открытом проводящем состоянии) обычно 0.6-0.7В, и больше у высокотоковых моделей.

При ремонте электронной техники и блоков питания или их проектировании новички спрашивают: как правильно выбрать диодный мост?

В этом случае самыми важными для вас параметрами будут обратное напряжение и ток. Например, чтобы подобрать диодный мост на 220В, нужно смотреть на модели с номинальным напряжением больше 400В и нужный ток, например, KBPC106 (или 108, 110). Его технические характеристики:

  • максимальный выпрямленный ток – 3А;
  • пиковый ток (кратковременно) – 50А;
  • обратное напряжение – 600В (800В, 1000В у KBPC108 и 110 соответственно).

Запомните эти характеристики и вы легко сможете определить, какой выбрать вариант по каталогу.

Для схемы «Ремонт зарядного устройства для MPEG4-плеера»

После двух месяцев эксплуатации вышло из строя «безымянное» зарядное устройство к карманному проигрывателю MPEG4/MP3/WMA. Схемы его, конечно, не было, поэтому пришлось составить ее по монтажной плате. Нумерация активных элементов на ней (рис.1) — условная, остальные соответствуют надписям на печатной плате.Узел преобразователя напряжения реализован на маломощном высоковольтном транзисторе VT1 типа MJE13001, узел стабилизации выходного напряжения произведен на транзисторе VT2 и оптроне VU1. Кроме того, транзистор VT2 защищает VT1 от перегрузки. Транзистор VT3 предназначен для индикации окончания зарядки аккумуляторов.При осмотре изделия оказалось, что транзистор VT1 «ушел на обрыв», a VT2 — пробит. Сгорел также резистор R1. На поиск и устранение неисправностей ушло не более 15 минут. Но при грамотном ремонте любою радиоэлектронного изделия обычно недостаточно одного лишь устранения неисправностей, надобно ещё узнать причины их возникновения, чтобы подобное не повторилось. Усилитор схема 5волтных Как оказалось, во час работы более того при отключенной нагрузке и открытом корпусе транзистор VT1, выполненный в корпусе ТО-92, разогревался до температуры приблизительно 90°С. Поскольку, поблизости не было более мощных транзисторов, подходящих на замену MJE13001, я решил приклеить к нему небольшой теплоотвод.Фотография зарядного

устройства показана на рис.2. Дюралюминиевый радиатор размерами 37x15x1 мм приклеен к корпусу транзистора теллопроводящим клеем «Радиал». Этим же клеем можно приклеить радиатор и к монтажной плате. С теплоотводом температура корпуса транзистора снизилась до 45…..

Чем можно заменить диодный мост-сборку

Вместо диодного моста, собранного в одном корпусе, можно впаять в схему 4 кремниевых выпрямительных диода или 4 полупроводника Шоттки. Однако вариант диодной сборки более эффективен, благодаря:

  • меньшей площади, занимаемой сборкой на схеме;
  • упрощению работы сборщика схемы;
  • единому тепловому режиму для всех четырех полупроводниковых устройств.

Различные варианты сборки диодного моста

Различные варианты сборки диодного моста

У такого схемотехнического решения есть и минус – в случае выхода из строя хотя бы одного полупроводника придется заменять всю сборку.

Преимущества двухполупериодного диодного моста

Полный мост, также называемый двухполупериодным выпрямителем, по ряду характеристик лучше, чем просто одиночный диод. Объясняется это тем, что он даёт возможность:

  1. снизить подмагничивание трансформатора, после которого стоит двухполупериодный выпрямитель;
  2. снять с выхода напряжение с удвоенной частотой, которое в итоге проще сгладить;
  3. повысить КПД трансформатора, на вторичной обмотке которого установлен полный диодный мост.

Diotec

Diotec.

Diotec Semiconductor AG (Diotec) — 1973 (). , . Plasma EPOS , , .

. , , Diotec — (), .

Diotec

1N4007, 1 1000 .


. 8. 1N4007 MS500

, 1N4007 . Diotec MS (.8). MS500 1000 . MS500 2,5 , 140 2 30 2, 1,6 . , 80% 90% , . . , ( QuattroChip), «» , , , ( ) .


. 9.

. . .


. 10. B250S2A

, , (SMD), . (, S1M) . B250S2A . 2,3 0,7 125 . , VF = 0,95 2 , 15-20% , . BxxxS2A QuattroChip, .

, 2000 . , . , , , .


. 11.

Diotec Plasma EPOS 2000 . , , MELF (SMD). SM513SM2000 MELF 1 1300-2000 .


. 12.

Diotec S1TS1Y, S1 2000 1 , SMA. S2x S3x 2 3 SMB SMC .


. 13. SMD

DB10xS 1 1000 . Diotec BxxxS, , , 40 , 30 , BxxxS SO-DIL (SMD) .

() .14.


. 14. UBA2021, B380C1500A

630- UBA2021 . B380C1500A 2,3 800 .

UBA2014, UBA2021, UBA2024.

, .

.


. 15.

.15 : .

, () , .

, .

.16 . , , , , .


. 16.

1N4007, B500S. BT136B-600E D2PAK, , .

, , , -, .

1.

P/N , VRRM () , IFAV () , IFSM ()
VF() IF () IR () VR ()
1N4001 DO-41 50 1 50 1.1 1 5 50
1N4002 DO-41 100 1 50 1.1 1 5 100
1N4003 DO-41 200 1 50 1.1 1 5 200
1N4004 DO-41 400 1 50 1.1 1 5 400
1N4005 DO-41 600 1 50 1.1 1 5 600
1N4006 DO-41 800 1 50 1.1 1 5 800
1N4007 DO-41 1000 1 50 1.1 1 5 1000
1N4007-13 DO-41 1300 1 50 1.1 1 5 1300
EM513 DO-41 1600 1 50 1.1 1 5 1600
EM516 DO-41 1800 1 50 1.1 1 5 1800
EM518 DO-41 2000 1 50 1.1 1 5 2000
S1A SMA 50 1 30 1.1 1 5 50
S1B SMA 100 1 30 1.1 1 5 100
S1D SMA 200 1 30 1.1 1 5 200
S1G SMA 400 1 30 1.1 1 5 400
S1J SMA 600 1 30 1.1 1 5 600
S1K SMA 800 1 30 1.1 1 5 800
S1M SMA 1000 1 30 1.1 1 5 1000
S1T SMA 1300 1 30 1.1 1 5 1300
S1W SMA 1600 1 30 1.1 1 5 1600
S1X SMA 1800 1 30 1.1 1 5 1800
S1Y SMA 2000 1 30 1.1 1 5 2000
S2A SMB 50 2 50 1.1 1.15 5 50
S2B SMB 100 2 50 1.1 1.15 5 100
S2D SMB 200 2 50 1.1 1.15 5 200
S2G SMB 400 2 50 1.1 1.15 5 400
S2J SMB 600 2 50 1.1 1.15 5 600
S2K SMB 800 2 50 1.1 1.15 5 800
S2M SMB 1000 2 50 1.1 1.15 5 1000
S2T SMB 1300 2 50 1.1 1.15 5 1300
S2W SMB 1600 2 50 1.1 1.15 5 1600
S2X SMB 1800 2 50 1.1 1.15 5 1800
S2Y SMB 2000 2 50 1.1 1.15 5 2000
S3A SMC 50 3 110 1.15 3 5 50
S3B SMC 100 3 110 1.15 3 5 100
S3D SMC 200 3 110 1.15 3 5 200
S3G SMC 400 3 110 1.15 3 5 400
S3J SMC 600 3 110 1.15 3 5 600
S3K SMC 800 3 110 1.15 3 5 800
S3M SMC 1000 3 110 1.15 3 5 1000
S3T SMC 1300 3 110 1.15 3 5 1300
S3W SMC 1600 3 110 1.15 3 5 1600
S3X SMC 1800 3 110 1.15 3 5 1800
S3Y SMC 200 3 110 1.15 3 5 2000
MS40 Micro-DIL 80 0.5 20 1.2 0.5 10 80
MS80 Micro-DIL 160 0.5 20 1.2 0.5 10 160
MS125 Micro-DIL 250 0.5 20 1.2 0.5 10 250
MS250 Micro-DIL 600 0.5 20 1.2 0.5 10 600
MS380 Micro-DIL 800 0.5 20 1.2 0.5 10 800
MS50 Micro-DIL 1000 0.5 20 1.2 0.5 10 1000
B40S2A SO-DIL 80 2.3 65 0.95 2 10 80
B80S2A SO-DIL 160 2.3 65 0.95 2 10 160
B125S2A SO-DIL 250 2.3 65 0.95 2 10 250
B250S2A SO-DIL 600 2.3 65 0.95 2 10 600
B380S2A SO-DIL 800 2.3 65 0.95 2 10 800
B40S SO-DIL 80 1 40 1.1 1 10 80
B80S SO-DIL 160 1 40 1.1 1 10 160
B125S SO-DIL 250 1 40 1.1 1 10 250
B250S SO-DIL 600 1 40 1.1 1 10 600
B380S SO-DIL 800 1 40 1.1 1 10 800
B500S SO-DIL 1000 1 40 1.1 1 10 100

Diotec

19 , 1888 . .

:

  • () , : , , .
  • () , , , () , 30 . , (), , , LM75, NE16, SE95.
  • — , , .

: , , . . , , , . : (Ethernet), (Wi-Fi, WiMax, ZeegBee) , , , .

, .17.

, , , .

, .


. 17.

, , 1N4007, MS250, B500S S1M SMD .

Diotec AC/DC-DC/DC

. , , , . , 1N400x, , . , . , , , . (), (TVS-, BZW04-xxx, P4KExx, 1.5KExx), , (, ZPDxx, ZPYxx, 1N53xx, BZVxx, BZXxx).

, .18.

R7 0 30 . .

GBU6B .


. 18.

, .. , : , , , , , .

. — (), , , c , . — , . , , .

. (, ) . , .

, .19.

(FlyBack) .


. 19.

36 3 220 . KBU6M, TVS- P6KE200A . AD1 . , . R7.

, .20.

5 1,2 .


. 20. TEA1522

TEA1522, ( ).

1N4007, , MS250, B500S.

, .21.


. 21.

, , .

407, 1N4002-1N4007 MS250, B500S.

Diotec

, .


. 22.

.22 1N4004, MS250.

.23 .

, .


. 23.

1N4004, 7805 .

, .

Diotec

, — . .24 .


. 24.

, , .

KBPC5012 (50 , 1200 ).

: , , .

.25 Pic- PIC16F628. , .



. 25. PIC16F628

1N5403 (3 , 300 ). Pic-.

Diotec

, , , , , , , . , . , , , , , .

.

.26 5 , , . .


. 26.

B125S (1 , 125 ) SO-DIL. , BD238, . , BT145-R (25 , 800 ) TO220AB. P1000G 10 400 KBPC2512F (800 , 25 ).

, . , . , : «» . — .27 . .


. 27. —

ICM7555 2 98% .

MS250 (250 , 0,5 ) SuperMicroDIL.

, Diotec . , — .

. .

, . , , .. , , . . Diotec . , . DB Fast-On DBI Diotec , .

DB 15-35 1600 , DBI 25 1600 .

Diotec , B40, B80, B125/250/380, CS 7 1000 , GBS, GBI, GBU, KBU, KBPC, PB 4-35 1600 . 2 .

2. —

P/N , , VRRM , IFAV 50/60 , IFSM
VF IF IR VR
3-
DB15/25-005 28,528,510 50 15/25 275/385 1.05 7.5 10 50
DB15/25-01 28,528,510 100 15/25 275/385 1.05 7.5 10 100
DB15/25-02 28,528,510 200 15/25 275/385 1.05 7.5 10 200
DB15/25-04 28,528,510 400 15/25 275/385 1.05 7.5 10 400
DB15/25-06 28,528,510 600 15/25 275/385 1.05 7.5 10 600
DB15/25-08 28,528,510 800 15/25 275/385 1.05 7.5 10 800
DB15/25-10 28,528,510 1000 15/25 375/385 1.05 7.5 10 1000
DB15/25-12 28,528,510 1200 15/25 275/385 1.05 7.5 10 1200
DB15/25-14 28,528,510 1400 15/25 275/385 1.05 7.5 10 1400
DB15/25-16 28,528,510 1600 15/25 275/385 1.05 7.5 10 1600
DB35-005 28,528,510 50 35 500 1.02 17.5 10 50
DB35-01 28,528,510 100 35 500 1.05 17.5 10 100
DB35-02 28,528,510 200 35 500 1.05 17.5 10 200
DB35-04 28,528,510 400 35 500 1.05 17.5 10 400
DB35-06 28,528,510 600 35 500 1.05 17.5 10 600
DB35-08 28,528,510 800 35 500 1.05 17.5 10 800
DB35-10 28,528,510 1000 35 500 1.05 17.5 10 1000
DB35-12 28,528,510 1200 35 500 1.05 17.5 10 1200
DB35-14 28,528,510 1400 35 500 1.05 17.5 10 1400
DB35-16 28,528,510 1600 35 500 1.05 17.5 10 1600
DBI15/25-005 402010 200 15/25 275/385 1.05 7.5/12.5 10 50
DBI15/25-01 402010 400 15/25 275/385 1.05 7.5/12.5 10 100
DBI15/25-02 402010 600 15/25 275/385 1.05 7.5/12.5 10 200
DBI15/25-04 402010 800 15/25 275/385 1.05 7.5/12.5 10 400
DBI15/25-06 402010 1000 15/25 275/385 1.05 7.5/12.5 10 600
DBI15/25-08 402010 1200 15/25 275/385 1.05 7.5/12.5 10 800
DBI15/25-10 402010 1400 15/25 275/385 1.05 7.5/12.5 10 1000
DBI15/25-12 402010 1600 15/25 275/385 1.05 7.5/12.5 10 1200
DBI15/25-14 402010 50 15/25 275/385 1.05 7.5/12.5 10 1400
DBI15/25-16 402010 100 15/25 275/385 1.05 7.5/12.5 10 1600
DBI25-005A 35254 50 25 390 1.05 12.5 10 50
DBI25-04A 35254 400 25 390 1.05 12.5 10 400
DBI25-08A 35254 800 25 390 1.05 12.5 10 800
DBI25-12A 35254 1200 25 390 1.05 12.5 10 1200
DBI25-16A 35254 1600 25 390 1.05 12.5 10 1600
DBI6-005 402010 200 6 135 1.05 3 10 50
DBI6-01 402010 400 6 135 1.05 3 10 100
DBI6-02 402010 600 6 135 1.05 3 10 200
DBI6-04 402010 800 6 135 1.05 3 10 400
DBI6-06 402010 1000 6 135 1.05 3 10 600
DBI6-08 402010 1200 6 135 1.05 3 10 800
DBI6-10 402010 1400 6 135 1.05 3 10 1000
DBI6-12 402010 1600 6 135 1.05 3 10 1200
DBI6-14 402010 900 6 135 1.05 3 10 1400
DBI6-16 402010 1000 6 135 1.05 3 10 1600
B125C1500A/B 193,510 250 1.8 50     10 250
B125D DIL 250 1 40 1.1 1 10 250
B250C1500A/B 193,510 600 1.8 50     10 600
B250S DIL 600 1 40 1.1 1 10 600
B380C1500A/B 193,510 800 1.8 50     10 800
B380D DIL 800 1 40 1.1 1 10 800
B40C1500A/B 193,510 80 1.8 50     10 80
B40D DIL 80 1 40 1.1 1 10 80
B500C1500A/B 193,510 1000 1.8 50     10 1000
B500S DIL 1000 1 40 1.1 1 10 1000
B80C1500A/B 193,510 160 1.8 50     10 160
B80D DIL 160 1 40 1.1 1 10 160
CS10D DIL 20 1 40 0.5 1 500 20
GBI10M 325,617 1000 3 220     10 1000
GBU10M 20,83,318 1000 8.4 300 1 12 10 1000
KBPC10/15/2500FP                
KBPC601 15,215,26,3 100 3.8 125 1.2 3 10 100
KBU12M 23,55,719,3 1000 8.4 300 1 12 10 1000
KBU8M 23,55,719,3 1000 5.6 300 1 8 10 1000
MS500 SuperMicroDIL 1000 0.5 20 1.2 0.5 10 1000
MYS250 MicroDIL 600 0.5 20 1.2 0.5 10 600
PB1001 19196,8 70 10 150 1.2 5 10 35
S80 MiniDIL (TO-269AA) 160 0.8 44 1.2 0.8 10 160

— Diotec S16 D2PAK (TO263). — .


. 28. S16

/ , .

S16 8 , , 16 24 . 1000 , 135 A 50 .

Diotec

, . Diotec, , , , TVS- ( , ), , , .

, , . . Diotec , .

Diotec , .

Diotec , , , International Rectifier (IR), STMicroelectronics, ON-Semiconductors, Vishay, .

,

fon_white.gif

DOC

fon_white.gif

Особенности видов напряжения

Возникает закономерный вопрос о том, зачем в розетках используется переменный ток, если подавляющее большинство электронной аппаратуры питается постоянным током. Дело в том, что для питания узлов той или иной аппаратуры требуются напряжения разной величины. Процессор компьютера, например, питается 3 В, а мобильный телефон требует для своей зарядки целых 5 В. Усилителю музыкального центра нужно уже около 25 В.

Постоянное напряжение достаточно сложно трансформировать из одной величины в другую, а вот переменное — запросто. Для этого служат, к примеру, трансформаторы. Некоторые важные силовые узлы, такие как двигатели, все же нуждаются в переменном напряжении. Поэтому промышленные генераторы, питающие бытовые розетки, вырабатывают его до общепринятой величины (например, 220 В), а каждый прибор уже на месте получает из него то, что ему требуется.

Недостатки полного моста

У полноценного двухполупериодного моста имеются недостатки:

  1. Ток вынужден протекать не по одному диоду, а сразу по двум, включенным последовательно. Поэтому удваивается падение напряжения на выпрямительном элементе. Для маломощных мостов на кремниевых диодах оно может достигать 2 вольт. В мощных выпрямителях – порядка 10 В. Отсюда существенные потери мощности на выпрямляющем элементе и его повышенный нагрев.
  2. При выходе из строя одного и четырёх диодов мост продолжает работать. Данный дефект может быть незаметен без специальных замеров. Однако он создаёт риск более серьёзной поломки устройства, которое питается через неисправный мостик.

Схема простого выпрямителя

Синусоидальное напряжение представляет собой периодический сигнал, изменяющийся во времени. С математической точки зрения он описывается функцией, в которой начало координат соответствует времени равным нулю. Сигнал состоит из двух полуволн. Находящаяся полуволна в верхней части координат относительно нуля называется положительным полупериодом, а в нижней части — отрицательным.

При подаче переменного напряжения на диод через подключённую к его выводам нагрузку, начинает протекать ток. Этот ток обусловлен тем, что в момент поступления положительного полупериода входного сигнала диод открывается. В этом случае к аноду прикладывается положительный потенциал, а к катоду отрицательный. При смене волны на отрицательный полупериод диод запирается, так как меняется полярность сигнала на его выводах.

Таким образом, получается, что диод как бы отрезает отрицательную полуволну, не пропуская её на нагрузку и на ней появляется пульсирующий ток только одной полярности. В зависимости от частоты приложенного напряжения, а для промышленных сетей она составляет 50 Гц, изменяется и расстояние между импульсами. Такого вида ток называется выпрямленным, а сам процесс —однополупериодным выпрямлением.

Выпрямительный мост

Выпрямляя сигнал, используя один диод, можно питать нагрузку, не предъявляющую особых требований к качеству напряжения. Например, нить накала. Но если запитать, например, приёмник, то появится низкочастотный гул, источником которого и будет промежуток, возникающий между импульсами. В некоторой мере для избавления от недостатков однополупериодного выпрямления совместно с диодом применяется параллельно включённый нагрузке конденсатор. Этот конденсатор будет заряжаться при поступлении импульсов и разряжаться при их отсутствии на нагрузку. А значит, чем больше значение ёмкости конденсатора, тем ток на нагрузке будет более сглажен.

Но наибольшего качества сигнала возможно достичь, если использовать для выпрямления одновременно две полуволны. Устройство, позволяющее это реализовать, получило название диодный мост, или по-другому — выпрямительный.

Технические характеристики

Наименование параметра Значение параметра
Номинальное напряжение сети (Uн), В 380±20%
Частота сети, Гц 50±2
Количество фаз 3
Номинальный ток (Iн), А 12,5, 25, 40 типоразмер 1

63, 100, 160, 200, 250 типоразмер 2

315, 630 по отдельному заказу

Диапазон регулирования выходного напряжения, В 0…Uн
Диапазон регулирования тока, А 0…Iн
Погрешность измерения среднеквадратичного значения тока, % ±3%
Аналоговые входы 3
Сигнал управления на аналоговом входе (по выбору): 0…20 мА (Rвх = 250 ом)

0…+ 5В (Rвх > 100 кOм)

0…+ 10 В (Rвх > 5 кOм)

Аналоговые выходы 3 неизолированных токовых выхода

0…20 мА (Rн

Дискретные входы неизолированные, 3
Напряжение управления дискретных входов, В 0…+ 12(+ 24) В
Входное сопротивление дискретного входа, не менее, кОм 4,7
Два релейных дискретных выхода «РАБОТА»

«ОТКАЗ»

Нагрузочная способность дискретного выхода 2 А, 220 В
Коммуникационный интерфейс Изолированный (Uиз. = 1000 В) RS-485-

протокол MODBUS RTU-

скорости 2400, 4800, 9600, 19200, 38400, 57600, 115200-

нагрузочная способность — 128 устройств

Степень защиты от внешних воздействий IР22
Рабочее положение вертикальное ±15°
Охлаждение воздушное, принудительное

Как спаять и подключить

Изучать и знать схемы не сложно, основные трудности возникают, когда новичок решает спаять диодный мост своими руками. Для пайки выпрямителя из 4 советских экземпляров типа кд202 используйте иллюстрацию приведенную ниже.

Как спаять выпрямитель

Для сборки диодного моста из современных дискретных диодов типа маломощных 1n4007 (и других – все выглядят аналогично и отличаются только размерами) внимательно посмотрите на следующую иллюстрацию.

Соединение из современных диодов

Но если вы не собираете его из отдельных деталей, а используете готовый мост, то смотрите ниже, как правильно подключить его в цепь.

Также новичкам будет интересно посмотреть видео о том, как сделать простейший блок питания на 12В:

Диодный мост

Такое устройство представляет собой электрический прибор, служащий для преобразования переменного тока в постоянный. Словосочетание «диодный мост» образуется из слова «диод», что предполагает использование в нём диодов. Схема диодного моста выпрямителя зависит от сети переменного тока, к которой он подключается. Сеть может быть:

  • однофазной;
  • трёхфазной.

В зависимости от этого и выпрямительный мост называется мостом Гретца или выпрямителем Ларионова. В первом случае используется четыре диода, а во втором прибор собирается уже на шести.

Для чего нужен диодный мост

Первая схема выпрямительного прибора собиралась на радиолампах и считалась сложным и дорогим решением. Но с развитием полупроводниковой техники диодный мост полностью вытеснил альтернативные способы выпрямления сигнала. Вместо диодов редко, но ещё применяются селеновые столбы.

Конструкции и характеристики прибора

Конструктивно выпрямительный мост выполняется из набора отдельных диодов или литого корпуса, имеющего четыре вывода. Корпус может быть плоского или цилиндрического вида. По принятому стандарту, значками на корпусе прибора отмечаются выводы подключения переменного напряжения и выходного постоянного сигнала. Выпрямители, имеющие корпус с отверстием, предназначены для крепления на радиатор. Основными характеристиками выпрямительного моста являются:

  1. Наибольшее прямое напряжение. Это максимальная величина, при которой параметры прибора не выходят за границы допустимых.
  2. Наибольшее допустимое обратное напряжение. Это максимальное импульсное напряжение, при котором мост длительно и надёжно работает.
  3. Наибольший рабочий ток выпрямления. Обозначает средний ток, протекающий через мост.
  4. Максимальная частота. Частота подаваемого на мост напряжения, при которой прибор работает эффективно и не превышает допустимый нагрев.

Превышение значений характеристик выпрямителя приводит к резкому сокращению срока его службы или пробою p-n переходов. Необходимо отметить такой момент, что все параметры диодов указываются для температуры окружающей среды 20 градусов. К недостаткам применения мостовой схемы выпрямления относят большее падение напряжения, по сравнению с однополупериодной схемой, и более низкое значение коэффициента полезного действия. Для уменьшения величины потерь и снижения нагрева мосты часто изготавливают с применением быстрых диодов Шотки.

Схема подключения устройства

На электрических схемах и печатных платах диодный выпрямитель обозначается в виде значка диода или латинскими буквами. Если выпрямитель собран из отдельных диодов, то рядом с каждым ставится обозначение VD и цифра, обозначающая порядковый номер диода в схеме. Редко используются надписи VDS или BD.

Диодный выпрямитель может подключаться напрямую к сети 220 вольт или после понижающего трансформатора, но схема включения его остаётся неизменной.

На каких принципах построена работа выпрямительного устройства

При поступлении сигнала в каждом из полупериодов ток сможет протекать только через свою пару диодов, а противоположная пара будет для него заперта. Для положительного полупериода открытыми будут VD2 и VD3, а для отрицательного VD1 и VD4. В итоге на выходе получится постоянный сигнал, но его частота пульсации будет увеличена в два раза. Для того чтобы уменьшить пульсацию выходного сигнала, используется, как и в случае с одним диодом, параллельное включение конденсатора С1. Такой конденсатор ещё называют сглаживающим.

Но случается так, что диодный мост ставится не только в переменную сеть, но и подключается в уже выпрямленную. Для чего нужен диодный мост в такой цепи, станет понятно, если обратить внимание в каких схемах используется такое его включение. Эти схемы связаны с использованием чувствительных радиоэлементов к переполюсовке питания. Использование моста позволяет осуществить простую, но эффективную защиту «от дурака». В случае ошибочного подключения полярности питания радиоэлементы, установленные за мостом, не выйдут из строя.

Проверка на работоспособность

Такой тип электронного прибора можно проверить, не выпаивая из схемы, так как в конструкциях устройств никакое его шунтирование не используется. В случае выпрямителя, собранного из диодов, проверяется каждый диод в отдельности. А в случае с монолитным корпусом измерения проводятся на всех четырёх его выводах.

Суть проверки сводится к прозвонке мультиметром диодов на короткое замыкание. Для этого выполняются следующие действия:

  1. Мультиметр переключается в режим позвонки диодов или сопротивления.
  2. Штекер одного провода (чёрного) вставляется в общее гнездо тестера, а второго (красного) в гнездо проверки сопротивления.
  3. Щупом, подключённым чёрным проводом, дотроньтесь до первой ножки, а щупом красного провода до третьего вывода. Тестер должен показать бесконечность, а если поменять полярность проводов, то мультиметр покажет сопротивление перехода.
  4. Минус тестера подается на четвёртую ногу, а плюс на третью. Мультиметр покажет сопротивление, при смене полярности бесконечность.
  5. Минус на первую ногу, плюс на вторую. Тестер покажет открытый переход, при смене – закрытый.

Такие показания тестера говорят об исправности выпрямителя. В случае отсутствия мультиметра можно воспользоваться обычным вольтметром. Но при этом придётся подать питание на схему и замерить напряжение на сглаживающем конденсаторе. Его величина должна превышать входное в 1,4 раза.

Практическое применение

На практике диодный мост имеет довольно широкий спектр применения – это и цифровая техника, блоки питания в персональных компьютерах, ноутбуках, различных устройствах, автомобильных генераторах, питающихся от низкого постоянного напряжения. Помимо этого их можно встретить в системах звуковоспроизведения, измерительной техники, теле- радиовещания, они устанавливаются в ряде различных устройств по всему дому. Для лучшего понимания роли диодного моста в этих приборах мы рассмотрим несколько конкретных схем, в которых он применяется.

Примеры схем с диодным мостом и их описание

Одна из наиболее простых схем с применением диодного моста – это зарядное устройство, применяемое для оборудования, питаемого низким напряжением. Один из таких вариантов рассмотрим на следующем примере

Схема зарядного устройстваРис. 5. Схема зарядного устройства

Как видите на рисунке, от понижающего трансформатора Т1 напряжение из переменного 220В преобразуется в переменное на уровне 7 – 9В. После этого пониженное напряжение подается на диодный мост VD, от которого выпрямленное через сглаживающий конденсатор С1 на микросхему КР. От микросхемы выпрямленное напряжение стабилизируется и выдается на клеммы разъема.

Схема карманного фонаряРис. 6. Схема карманного фонаря

На рисунке выше приведен пример схемы карманного фонаря, данная модель подключается к бытовой сети 220В через розетку, что представлено соединением разъема Х1 и Х2. Далее напряжение подается на мост  VD, а с него уже на микросхему DA1, которая при наличии входного питания сигнализирует об этом через светодиод HL1. После этого напряжение питания приходит на аккумулятор GB, который заряжается и затем используется в качестве основного источника питания для лампы фонарика.

Пример схемы сварочного агрегатаПример схемы сварочного агрегата

Здесь представлен пример схемы сварочного агрегата, в котором диодный мост устанавливается сразу после понижающего трансформатора для выпрямления электрического тока. Из-за сложности схемы дальнейшее рассмотрение работы устройства нецелесообразно. Стоит отметить, что существуют и другие устройства с еще более сложным принципом работы – импульсные блоки питания, ШИМ модуляторы, преобразователи и т.д.

Силовые устройства

Выпрямители тока данного типа используются в различных блоках питания. Наиболее часто их можно встретить в персональных компьютерах. Схема устройства предполагает использование векторного транзистора. Если рассматривать двухканальную модификацию, то подключение осуществляется через расширитель.

В некоторых устройствах используются тетроды. Если рассматривать трехканальные элементы, то они рассчитаны для блоков питания на 20 В. В данном случае тетроды никогда не применяются. Принцип работы выпрямителей построен на изменении частоты. Многие модификации продаются с электронными вентилями. Если говорить про параметры, то чувствительность устройства колеблется в районе 23 мВ. Непосредственно проводимость тока у моделей не превышает 2 мк.

Область применения и назначение

Чаще всего диодные мосты используют в блоках питания. В трансформаторных БП они подключаются ко вторичной обмотке трансформатора

Схема подключения в трансформаторном БП

В импульсных БП – ко входу сети 220В. При этом электронная схема управления и силовая цепь ИБП питается от выпрямленного и сглаженного (не всегда) сетевого напряжения (достигает порядка 300-310 Вольт).

Выпрямители импульсного блока питания

На выводах вторичной обмотки импульсного блока питания высокочастотное переменное напряжение. Для того, чтобы его выпрямить, устанавливают сборки из сдвоенных диодов Шоттки. В связи с этим часто используют схему выпрямления со средней точкой.

Мост в генераторе автомобиля

В автомобилях и мотоциклах используются трёхфазные диодные мосты, собранные по схеме Ларионова с тремя дополнительными вентилями, потому что для питания бортовой сети используется трёхфазный генератор. Мост в генераторе выполняется в виде сектора окружности и устанавливается на его задней части.

Схема генератора автомобиля

Исключение составляют некоторые современные автомобили Toyota и прочих марок, в них используют 6 фазный генератор, для реализации двенадцатипульсной схемы выпрямления из 12 вентилей. Это нужно для снижения пульсации и увеличения выходного тока.

Чем заменить диодный мост в генераторе

В большинстве моделей авто- и мототехники мостовые сборки впаивают в алюминиевый радиатор, поэтому в случае выхода из строя их придется выпаивать и выпрессовывать из радиаторной пластины и заменять на новый. Поскольку это довольно сложная процедура, лучше избегать возникновения факторов, из-за которых сгорает диодный мост. Наиболее часто встречающиеся причины этой проблемы:

  • на плату попала жидкость;
  • грязь вместе с маслом проникла к полупроводникам и вызвала короткое замыкание;
  • изменение положения полюсов контактов на АКБ.

Преимущества и недостатки

Преимущества диодного моста общеизвестны:

  • отработанные десятилетиями схемы;
  • простота сборки и подключения;
  • несложная диагностика неисправности и простота ремонта.

В качестве недостатков надо упомянуть рост габаритов и веса схемы при увеличении мощности, а также необходимости использования радиаторов для мощных диодов. Но с этим сделать ничего нельзя – физику не обмануть. Когда эти условия станут неприемлемыми, надо решать вопрос о переходе к импульсной схеме источника питания. Кстати, мостовое включение диодов может быть использовано и в ней.

Также надо отметить форму выходного напряжения, далекую от постоянной. Для работы с потребителями, предъявляющими требования к стабильности питающего напряжения, надо использовать мост совместно со сглаживающими фильтрами, а при необходимости и стабилизаторами на выходе.

Полупроводники Шоттки в современном мире

Диоды Шоттки получили широкую популярность и распространение во всех сферах современной жизни, особенно в электронике. Их можно найти как сдвоенные выпрямительные диоды, где два полупроводника установлены в одном корпусе и концы анодов или катодов связаны между собой, так и простые, также бывают очень маленькими (например, очень часто встречается в мелких электрических деталях).

Этот полупроводник очень часто используют в импульсных блоках питания в бытовой технике, что значительно снижает потери и улучшает тепловой режим работы. Также данные электронные элементы используются в транзисторах в качестве выпрямителей тока, и в таких специальных диодах, которые используют для объединения параллельных источников питания.

Диодный мостик своими руками

Чтобы самостоятельно собрать выпрямитель, понадобится 4 однотипных диода. При этом они должны подходить по обратному напряжению, максимальному току и рабочей частоте. Соединения нужно сделать в соответствии со схемой ниже. Между двумя катодами снимается положительное напряжение, между анодами – отрицательное. К точкам, в которых подключены разноимённые выводы диодов, подсоединяется источник переменного напряжения. Всю схему можно за пару минут спаять навесным монтажом или потрудиться и выполнить в виде небольшой печатной платы.

Дополнительная информация. Обратные напряжения диодов, включенных в последовательную цепь, складываются между собой.

Мостик своими руками

Мостик своими руками

Схема 3-фазного частотника

Преобразователи напряжения импульсные

Тиристорные трехфазные преобразователи частоты используются для управления мощной нагрузкой и находят применение там, где нет возможности включения оборудования на IGBT транзисторах.

Различают два класса устройств по принципу коммутации управляющих элементов:

  • С одноступенчатой коммутацией;
  • Двухступенчатые.

Одноступенчатые устройства отличаются простой схемотехникой, но не обладают возможностью регулировки выходного напряжения, поскольку управление производится всеми тиристорами одновременно. Регулирование напряжения идет путем установки в цепи постоянного питающего напряжения через установку регулируемого выпрямителя.

В свою очередь, двухступенчатые преобразователи делятся на схемы:

  • С групповой коммутацией;
  • С пофазной коммутацией;
  • С индивидуальным управлением.

Данные устройства сложнее не только схемой управления, но и силовой частью, поскольку в них присутствует две группы тиристоров: анодные и катодные.

Групповая коммутация

Управляющие сигналы поступают раздельно на анодную или катодную группу.

Пофазная коммутация

Управление осуществляется раздельно по каждой фазе преобразования путем отключения анодного или катодного тиристора.

Индивидуальная коммутация

Здесь управление производится каждым тиристором преобразователя раздельно. За счет индивидуального управления можно реализовывать большое число алгоритмов преобразования, снижать до минимума искажения формы сигнала и уровень электромагнитных помех.

Расчёт мощности

Перед тем, как приобрести стабилизатор напряжения, очень важно сделать расчет мощности всего, чему необходима электроэнергия. То есть, требуется подсчитать сумму всех электрических приборов дома

Рекомендуется также учесть тот факт, что некоторые виды электродвигателей по мощности намного больше, чем установлено. Тогда, в свою очередь, выпрямитель напряжения должен быть намного мощнее всех двигателей и компрессоров в пять раз.

Чтобы правильно рассчитать мощность, нужно не только сложить все бытовые приборы, но учитывать впускаемый ток. Чтобы узнать мощность электрическийх приборов, рекомендуется посмотреть этикетку или технический паспорт. Еще одним моментов является тип нагрузки, который также следует учесть при расчетах.

Она бывает 2 типов:

  1. Активная нагрузка – это преобразование приборами различных типов энергии. Таких как световая или тепловая. Большинство электрических приборов имеют только активную нагрузку. Они потребляют приблизительно один квт электроэнергии.
  2. Реактивная нагрузка – к ней относятся разнообразные двигатели. Эти бытовые приборы имеют как полную мощность, так активную. Она имеет условное обозначение. Если требуется вычислить мощность такого электроприбора, нужно активную мощность разделить на указанное условное обозначение.

Также, в расчетах учитываются пусковые токи, то есть потребление электроэнергии при запуске прибора. Такие токи есть наличием у приборов с электродвигателем. Если поставили трансформатор, то нужно мощность таких приборов умножать на пять. В противном случае, трансформатор не предоставит возможность включить прибор.

Как выбрать диоды для изготовления диодного моста?

Главными критериями выбора являются напряжение и сила тока, при которой диод не перегревается. При прямом включении на нем падает напряжение около 0,6 В, поскольку он обладает внутренним сопротивлением. Обратное напряжение, которое диод выдерживает, не входя в режим теплового и электрического пробоя, имеет определенный предел. Если он рассчитан на 220 В, то берется запас не ниже 25 %. Но лучше брать его достаточно большим, чтобы уберечь от случайных скачков напряжения в сети.

Ток также берется с запасом. Если нужно, предусматривается охлаждающий радиатор.

Для правильного выбора пользуются справочной таблицей диодов и диодных мостов.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...