Найдено вещество с гигантским значением диэлектрической проницаемости

Коронный разряд.

Одним из наиболее известных и распространенных изоляторов является воздух при атмосферном давлении и нормальной температуре. Для низких напряжений удельное электрическое сопротивление такого воздуха составляет ок. 1018 ОмЧсм. Когда напряженность электрического поля поперек однородной воздушной щели достигает 30 кВ/см, проводимость увеличивается, так как начинается фотоионизация воздуха и в конце концов между электродами проскакивает искра. Если геометрия электродов разнородна, как, например, в случае острия и плоскости или провода линии электропередачи над поверхностью земли, вокруг острия или провода при достаточно большой напряженности электрического поля возникает светящаяся область ионизованного воздуха, называемая коронным разрядом. Ток коронного разряда возрастает с увеличением напряжения, и в конце концов возникает искра или дуга в зависимости от мощности источника и сопротивления внешней цепи.

Напряжение — тепловой пробой

Напряжение теплового пробоя уменьшается с увеличением температуры, так как при этом возрастает температура р — — перехода, а следовательно, уменьшается обратное допустимое напряжение. [2]

Напряжение теплового пробоя определяется условиями отвода тепла от изоляции и тепловыделениями в самой изоляционной конструкции. Сильное влияние оказывают также размеры и теплопроводности самой изоляции, электродов и других элементов конструкции, а также тепловыделения в токоведущих частях. [4]

Напряжение теплового пробоя сильно зависит от температуры окружающей среды и условий теплоотвода. [6]

Напряжение теплового пробоя существенно зависит от конструкции диода, которая определяет условия отвода тепла от перехода. Качество теплоотвода определяется тепловым сопротивлением — Rt, показывающим, на сколько градусов повысится температура перехода Д / при повышении рассеиваемой мощности на АР. [7]

Напряжение теплового пробоя обратно пропорционально току через прибор. Поэтому тепловой пробой может возникнуть после того, как обратный ток возрастет благодаря туннельному эффекту или эффекту ударной ионизации. Этим объясняется наличие на вольт-амперной характеристике участка с отрицательным сопротивлением после участков, соответствующих туннельному или лавинному пробою. [8]

Напряжение теплового пробоя зависит от температуры, а следовательно, от тока длительности и формы импульсов. При некоторых длительностях и скважностях тепловой механизм практически прекращает свое влияние на величину напряжения пробоя. Уже в начале активной области при токах, превышающих 1к о лишь в 2 — 3 раза, напряжение теплового пробоя резко возрастает, и единственной причиной, ограничивающей напряжение коллектора, остается лавинный пробой. [9]

Напряжение теплового пробоя непосредственно связано с температурой окружающей среды. [11]

Величина напряжения теплового пробоя зависит от температуры окружающей среды. Если Г01ф возрастает, то Ротв становится меньше и пробой наступает при меньшей величине обратного напряжения. [12]

Следовательно, напряжение теплового пробоя полупроводникового диода определяется его обратным током, температурным коэффициентом обратного тока и тепловым сопротивлением. Особое внимание следует обратить на сильную зависимость напряжения теплового пробоя от температуры окружающей среды. [13]

При расчетах напряжения теплового пробоя в первую очередь должны учитываться тангенс угла диэлектрических потерь и зависимость величины tg6 от температуры. [15]

Типовые причины неисправности изоляционного покрытия

Несмотря на то, что оболочка современных электрических кабелей изготавливается из качественного и прочного материала – она, тем не менее, иногда теряет свои защитные свойства. Последнее обычно объясняется следующими причинами:

  • разрушительное воздействие высокого напряжения и солнечного света;
  • механические повреждения (деформации);
  • нарушения температурного режима;
  • климатические особенности окружающей местности (жара или сильные морозы, например).

Сопротивление изоляции: методы измерения и нормыНарушение целостности изоляции кабеля вследствие механического повреждения

Для выяснения степени повреждения и допустимости дальнейшей эксплуатации проводов и кабелей организуются измерения сопротивления изоляции кабельных трасс.

Важно! При обнаружении явного повреждения оболочки кабеля организация и проведение испытаний теряет всякий смысл

В этом случае зона разрушений нуждается либо в ремонте (если это допустимо), либо в полной замене участка кабельной трассы или ответвления проводки.

Своевременно проведенное испытание изоляции на прочность позволяет предотвратить целый ряд неприятных последствий, включая КЗ в электросети, поражение людей высоким напряжением и возникновение пожара.

Теория

Цель работы

Определения и исследование электрической прочности композиционных(слоистых) диэлектриков при разной форме электродов на переменном токе промышленной частоты.

Общие сведения

В литературе приводятся различные механизмы пробоя твердых диэлектриков, но при пробое твердых диэлектриков. Наряду с электрическим, тепловым и электрохимическим пробоем возможны также ионизационный, электромеханический и электротермический механизмы пробоя. В чистом виде при пробое ни один из механизмов не встречался.

Электрический пробой – разрешение диэлектрика, обусловленное ударной ионизацией электронами или разрушение связей между атомами, ионами или молекулами. Происходит за время \(10^{-5}-10^{-8}\)с.

Тепловой пробой – разрушение диэлектрика за счет прогрессирующего локального энерговыделения при протекании тока в среде.

Ионизационный пробой можно наблюдать в полимерных диэлектриках, содержащих газовые поры, в которых развиваются в так называемые частичные разряды. В результате элктронно-ионной бомбардировке стенок пор и действия оксидов азота и озона полимер изменяет химический состав и механически разрушается.

Электротермический пробой характерен для хрупких диэлектриков и пористых керамик. Он возникает в результате механического разрушения из-за развития микротрещин под действием разрядов в газовых включениях, которые образуют перегретые области диэлектрика.

Электромеханический пробой – механическое разрушение полимера при высоком напряжении в результате того, что полимер находится в высокоэластичном состоянии. Причиной является уменьшение толщины диэлектрика из-за электростатического притяжения электродов под действием высокого напряжения.

Электромеханический пробой – механическое разрушение полимера при высоком напряжении в результате того, что полимер находится в высокоэластичном состоянии. Причиной является уменьшение толщины диэлектрика из-за электростатического притяжения электродов под действием высокого напряжения.

Минимальное напряжение \(U_{пр}\), приложенное к диэлектрику и приводящее к образовании. В нем проводящего канала, называется пробивным напряжением. В зависимости от того, замыкает ли канал оба электрода, пробой может быть полным, неполным или частичным. У твердых диэлектриков возможен также поверхностный пробой, после которого повреждается поверхность материала ,образуя на органических диэлектриках науглероженный след – трекинг.

Отношение импульсного пробивного напряжения к его статическому значению больше единицы и называется коэффициентом импульса.

Зависимость пробивного напряжения от времени приложения напряжения называют кривой жизни электрической изоляции.

Снижение Uпр от времени происходит из-за электрического старения изоляции – необратимых процессов под действием тепла, и электрического поля.

Электрической прочностью называют напряженность электрического поля при пробое изоляции в однородном электрическом поле,

Где \(E_{пр}\) — электрическая прочность, В/м; \(U_{пр}\) — пробивное напряжение, В; \(d\) – толщина диэлектрика, м.

Кроме В/м электрическую прочность часто выражают в мВ/м или кВ/м.

Для экспериментального исследование пробоя используют электроды различной формы, между которыми помещают диэлектрик. Испытания диэлектриков на пробой проводят в однородном и неоднородном электрических полях. В газообразных и жидких диэлектриках однородность поля обеспечивает обычно путем придания поверхности электродов определенной формы, например сферической с радиусом R, значительно превышающим расстояние h между их ближайшими точками или используют электроды Роговского, форма которых соответствует эквипотенциальным поверхностям и обеспечивает однородность электрического поля в средней чести между электродами.

Приблизительно однородное поле в твердых диэлектриках можно получить, если подвергнуть их механической обработке, выдавливая или высверливая в них лунки со сферической поверхностью. Такая обработка может нарушить структуру диэлектрика, поэтому необходимо контролировать качество образцов. Для установления простейших закономерностей и механизма пробоя диэлектриков этот процесс проводят в однородном и неоднородном электрических полях. Для получения неоднородного опля используют электроды типа острие-острие или острие-плоскость. Значение \(U_{пр}\) в неоднородном поле значительно меньше, чем в однородном из-за повышения среднего значе6ния напряженности поля \(E_{ср}= U_{пр} /h\) вблизи электрода с малым радиусом кривизны.

Большое практическое значение имеет задача изучения электрической прочности неоднородных, композиционных и слоистых диэлектриков. К таким диэлектрикам относится кабельная или конденсаторная бумага, пропитанная изоляционным маслом. Электрическая прочность \((Е_{пр})\) нескольких слоев бумаги зависит от микронеоднородностей или точечных повреждений отдельных слоев бумаги, формы электродов, площади их поверхности, а также от плотности бумаги, толщины листа и прослойки масла между листами и их диэлектрических свойств, наличия газовых включений.

Как на постоянном, так и на переменном токе \(Е_{пр}\) слоистого диэлектрика зависит от распределения напряженности электрического поля по отдельным слоям и от ионизации воздушных включений.

Простейшим слоистым диэлектриком является диэлектрик, состоящий из двух плоскопараллельных слоев с различными электрическими характеристиками. На переменном токе в каждом слое напряженность поля обратно пропорциональна диэлектрической проницаемости (ε), а на постоянном – удельной электрической проводимости (γ) материала слоя. Такое распределения напряженностей определяется формулами:

$$E_1/E_2= ε_2/ε_1; E_1/E_2= γ_2/ γ_1$$

Поскольку у пропитанной маслом конденсаторной бумаги диэлектрическая проницаемость εб=4,5, а у масла εм=2,2, и, соответственно, удельная электрическая проводимость γб=10-11 (Ом·м)-1, γм=10-9 (Ом·м)-1, то в пакете из пропитанной маслом конденсаторной бумаги на переменном токе напряженность электрического поля больше в слое масла , а на постоянном — в слое бумаге. Поэтому на переменном токе пакет бумаги пробивается при меньших напряжениях, чем на постоянном. Этому способствует также и наличие воздушных включений неизбежных в многослойных диэлектриках, в котором на переменном токе происходит больше разрядов в единицу времени, чем на постоянном токе. Уменьшению электрической прочности при разрядах способствуют и образующиеся при этом озон и окислы азоты, разрушающие бумагу. Этот процесс называют старением.

В зависимости электрической прочности от числа листов пропитанной конденсаторной бумаги наблюдается обычно максимум (для пакета из 6-7 листов), обусловленный наличием слабых в электрическом отношении мест в объеме диэлектрика между электродами и в самом диэлектрике. Рост Епр в таком случае можно связать с уменьшение вероятности совпадения слабых мест при увеличении числа листов в пакете, а уменьшение неоднородности электрического поля и неоднородности слоистого диэлектрика(пакета листов).

В системе контроля качества электрической изоляции получило распространение определение среднего значения пробивного напряжения и электрической прочности, а также определение разброса – разности между максимальной и минимальной измеренными величинами. Так как физическое явление пробоя диэлектрика имеет статический характер, то множество измеряемы величин обычно укладывается в нормальное распределение. Для статической оценки совокупности значений Uпр предусматривается расчет следующих величин статических параметров: разброса значений среднего арифметического, дисперсии, среднеквадратического отклонения, коэфицента вариации и асимметрии, эксцесса и контрэкцесса, 90% доверительного интервала. Следует иметь ввиду, что в ряде случаев, для характеристики опытных данных по пробою диэлектриков могут кроме нормального распределения использоваться логарифмически нормальное распределение, распределение Вейбулла и двойное экспоненциальное распределение. Поэтому, прежде всего, необходимо построить гистограмму для большого количества опытов и определить, подчиняется ли нормальному распределению непосредственно контролируемые величины.

Эмпирическую функцию распределения пробивных напряжений диэлектрика, целесообразно условно разбивать на три участка: область наибольшей электрической прочности, характеризующую идеальный диэлектрик и, по-видимому, мало отражающую прочность реальных материалов; область модальных значений, отражающую процессы в реальном диэлектрике с внутренне присущими ему микроскопическими дефектами; область минимальных пробивных значений, соответствующую минимальным вероятностям разрушения изоляции. Сказанное выше показывает, что модели электрической прочности, соответствующие разным частям эмпирической функции распределения, должны быть существенно различными.

Эффект поляризации диэлектрика и проницаемость

Под воздействием электрического поля в диэлектрике имеет место поляризация — явление, связанное с ограниченным смещением зарядов или поворотом электрических диполей. Данное явление характеризует вектор электрической поляризации P {\displaystyle \mathbf {P} } , равный дипольному моменту единицы объёма диэлектрика. В отсутствие внешнего поля диполи ориентированы хаотично (см. верхний рис.), за исключением особых случаев спонтанной поляризации в сегнетоэлектриках. При наличии поля диполи в большей или меньшей степени поворачиваются (нижний рис.), в зависимости от восприимчивости χ ( ω ) {\displaystyle \chi (\omega )} конкретного материала, а восприимчивость, в свою очередь, определяет проницаемость ε ( ω ) {\displaystyle \varepsilon (\omega )} . Помимо дипольно-ориентационного, имеются и другие механизмы поляризации. Поляризация не изменяет суммарного заряда в любом макроскопическом объёме, однако она сопровождается появлением связанных электрических зарядов на поверхности диэлектрика и в местах неоднородностей. Эти связанные заряды создают в диэлектрике дополнительное макроскопическое поле, как правило, направленное против внешнего наложенного поля. В итоге тот факт, что ε a ≠ ε 0 {\displaystyle \varepsilon _{a}\neq \varepsilon _{0}} , является следствием электрической поляризации материалов.

Параметры изоляции

К основным параметрам электроизоляции относят электрическую прочность, удельное электрическое сопротивление, относительную диэлектрическую проницаемость, угол диэлектрических потерь. При оценке электроизоляционных свойств материала учитывается также зависимость перечисленных характеристик от величин электрического тока и напряжения.

Электроизоляционные изделия и материалы обладают большей величиной электрической прочности в сравнении с проводниками и полупроводниками. Важна также для диэлектрика стабильность удельных величин при нагревании, повышении напряжении и других изменениях.

Измерительные приборы

Приборы для измерения сопротивления изоляции условно делятся на две группы. Это: щитовые измерители переменного тока и малогабаритные приборы (они переносятся вручную). Первые образцы применяются в комплекте с подвижными или стационарными установками, имеющими собственную нейтраль. Конструктивно они состоят из релейной и индикаторной частей и способны непрерывно работать в действующих сетях 220 или 380 Вольт.

Чаще всего замеры сопротивления изоляции электропроводки организуются и проводятся с использованием мобильных устройств, называемых мегаомметрами. В отличие от обычного омметра, это прибор предназначается для измерений особого класса, основанных на оценке состояния изоляции при воздействии на нее высокого напряжения.

Обратите внимание: Импульсные посылки амплитудой порядка 1-2 кВ генерируются самим же мегаомметром.

Известные модели этих приборов бывают аналоговыми и цифровыми. В первых из них для получения нужной величины испытательного напряжения используется механический принцип (как в “динамо-машине”). Специалисты нередко называют их “стрелочными”, что объясняется наличием градуированной шкалы и измерительной головки со стрелкой.

Эти устройства достаточно надежны и просты в обращении, но на сегодня они морально устарели. Основное неудобство работы с ними состоит в значительном весе и больших габаритах. На смену им пришли современные цифровые измерители, в схеме которых предусмотрен мощный генератор, собранный на ШИМ контроллере и нескольких полевых транзисторах.

Такие модели в зависимости от конкретной конструкции способны работать как от сетевого адаптера, так и от автономного питания (один из вариантов – аккумуляторные батареи). Показания по измерению изоляции силовых кабелей в этих приборах выводятся на ЖК дисплей. Принцип их работы основан на сравнении проверяемого параметра и эталона, после которого полученные данные поступают в специальный блок (анализатор) и обрабатываются там.

Сопротивление изоляции: методы измерения и нормыЦифровые приборы отличаются сравнительно небольшим весом и малыми размерами, что очень удобно при проведении полевых испытаний. Типичными представителями таких приборов являются популярные измерители Fluke 1507 (фото слева). Однако для работы с электронной схемой нужен определенный уровень квалификации, позволяющий подготовить прибор и получить при измерениях минимальную погрешность. Такой же подход потребуется и при обращении с импортным цифровым изделием под обозначением “1800 in”.

Важно отметить, что проверять изоляцию кабельной продукции посредством обычных измерительных приборов не имеет смысла. Для этих целей не годится ни самый “продвинутый” мультиметр, ни любой другой подобный ему образец. С их помощью удастся провести лишь приблизительную оценку параметра, полученного с большим процентом погрешности.

Подготовка к измерениям

Подготовка к проведению испытаний изоляции сводится к выбору прибора, подходящего по своим характеристикам для заявленных целей, а также к организации схемы измерений. Наиболее подходящими для большинства случаев считаются следующие приборы:

  1. Мегаомметры типа М4100, имеющие до пяти модификаций.
  2. Измерители серии Ф 4100 (модели Ф4101, Ф4102, рассчитанные на пределы от 100 Вольт до одного киловольта).
  3. Приборы ЭС-0202/1Г (пределы 100, 250, 500 Вольт) и ЭС0202/2Г (0,5, 1,0 и 2,5 кВ).
  4. Цифровой прибор Fluke 1507 (пределы 50, 100, 250, 500, 1000 Вольт).
мегаомметр М4100

Мегаомметр М4100

мегаомметр-Ф-4100

Мегаомметр-Ф-4100

мегаомметр-ЭС-02021Г

Мегаомметр-ЭС-02021Г

Цифровой прибор Fluke 1507

Цифровой измеритель Fluke 1507

Важно! Для замеров берутся только предварительно поверенные приборы, обязательно имеющие лицензию производителя.

Согласно ПУЭ перед замерами сопротивления изоляции потребуется подготовить схему присоединения мегаомметра к элементам проверяемого объекта. Для этого в комплекте измерителя имеется пара гибких проводов длиной не более 2-х метров. Собственное сопротивление их изоляции не может быть менее 100 Мом.

Отметим также, что для удобства проверки изоляции кабеля мегаомметром рабочее концы проводов маркируются, а со стороны прибора на них надеваются специальные наконечники. С ответной стороны измерительные кабели оборудуются зажимами типа «крокодил» со специальными щупами и изолированными ручками.

Нормы сопротивления изоляции для различных кабелей

Встречаются следующие виды электрических проводников:

  1. Высоковольтные — используются при уровне напряжения более 1 кВ. С их помощью прокладываются линии электропередач, и подается питание на шести киловольтные электродвигатели. Допустимой величиной сопротивления изоляционного слоя считается один мОм на кВ. Например, при уровне напряжения 6 кВ норма составит 6 мОм.
  2. Низковольтные — используются в электрических схемах напряжением менее 1 кВ. Наиболее часто применяются для прокладки сети освещения, подключения электродвигателей на 220 и 380 В. Минимальный показатель сопротивления для указанных токопроводящих жил — 0.5 мОм.
  3. Контрольные — предназначены для подключения измерительных приборов, устройств РЗА, а также для формирования схем вторичной коммутации. Для данной категории проводов нижний предел изоляции равняется 1 мОм.

Нормы сопротивления изоляции для различных видов электрооборудованияНормы сопротивления изоляции для различных видов электрооборудования

Конкретные показатели сопротивлений для определенных марок кабеля можно узнать в следующей технической литературе:

  • ПУЭ — таблица 1.8.34;
  • ПТЭ — таблица 37.

к содержанию ↑

Газ и изоляция

Казалось бы, как связана ионизация газов и изоляция электрооборудования? Газ и электричество связаны самым тесным образом, ведь он является отличным диэлектриком. И поэтому для изоляции высоковольтного оборудования используется газовая среда.

В качестве диэлектрика используются: воздух, азот и элегаз. Элегаз – это гексафторид серы, наиболее перспективный, в плане электроизоляции материал. Для распределения и приема электроэнергии высокого напряжения, более 100 кВ (отвод электростанций, прием электричества в крупных городах и так далее), используются комплектные распределительные устройства (КРУЭ).

Основной областью применения элегаза как раз и являются КРУЭ. Газ помимо использования в качестве электроизоляции, может возникать в процессе эксплуатации маслонаполненных кабелей (или кабелей с пропитанной бумажной изоляцией). Так как происходят цикличный нагрев и охлаждение кабеля в результате прохождения напряжения разной величины.

К кабелям с пропитанной бумажной изоляцией применим термин «термическая деструкция». В результате пиролиза целлюлозы возникают водород, метан, углекислый и угарный газы. В процессе старения изоляции, возникающие газовые образования (при повышенном напряжении) вызывают ионизационный пробой изоляции. Как раз по причине ионизационных явлений силовые кабели с изоляцией из пропитанной маслом бумаги (с вязкой пропиткой) применяются в силовых линиях напряжением до 35 кВ и все реже применяются в современной энергетике.

7.

Методы экспериментального определения электрической

прочности

• Электрическая прочность жидких и твердых диэлектриков

определяется на установках типа

АИИ — 70, позволяющих

производить испытания на постоянном и переменном U в

пределах от 0 до 70 кВ. Принципиальная схема электрических

соединений установки АИИ — 70 дана на рисунке 3.3.

1 — резервуар с электродами для испытания жидких диэлектриков;

2 — вывод постоянного U для испытания твердых диэлектриков;

3 — вывод переменного U для испытания твердых диэлектриков.

Рисунок 5.3 — Электрическая схема испытательной установки АИИ — 70

Причины уменьшения электрической прочности

Наиболее отрицательное влияние на электрическую прочность изоляции оказывает переменное напряжение и температура. При переменном напряжении, то есть напряжении, которое меняется время от времени, например, электростанция выдает в линию 220 кВ, из-за технической неисправности или планового ремонта, величина напряжения уменьшена до 110 кВ, после ремонта стало опять 220 кВ. Это и есть переменное напряжение, то есть изменяющееся за определенный период времени. Ввиду того что в Российской Федерации 50 процентов электроустановок для передачи электроэнергии уже выработали свой ресурс (а он составляет 25-30 лет), то переменное напряжение довольно-таки частое явление. Среднее значение такого напряжение определяется с помощью графика:

Или определяется по формуле:

Температура нагрева кабеля, вследствие протекания электрического тока, значительно уменьшает срок службы проводника (происходит, так называемое, старение изоляции). Зависимость напряженности пробоя при различной температуре изображена на графике:

Испытание электрической прочности изоляции между смежными витками обмоток.

В соответствии с ГОСТ 183-74 оно проводится путем повышения напряжения при холостом ходе до значений (1,3 ÷ 1,5) Uном на 3—5 мин. Для электрических машин постоянного тока и синхронных это испытание связано с необходимостью увеличения тока возбуждения, а для асинхронных двигателей — с увеличением тока холостого хода. Если при этом указанные выше токи могут вызвать чрезмерный нагрев, то время испытания может быть сокращено до 1 мин. С целью уменьшения этих токов разрешается повышение на 15% частоты питающей сети, а также частоты вращения электрических машин. Испытание межвитковой изоляции можно совмещать с испытанием при повышенной частоте вращения.
Для электрических машин постоянного тока с числом полюсов 2р > 4 повышение напряжения якорной обмотки ограничивается величиной Ukmax при которой среднее напряжение между коллекторными пластинами < 24 В,
ispytanie-el-mashin-62.png(2.6)
где К — число пластин.
Указанные выше стандартные испытания в связи с небольшим значением напряжения между витками являются проверкой исправности обмотки, но не дают информации об электрической прочности межвитковой изоляции. Для самой тонкой изоляции (эмальпровода) пробивное напряжение равно примерно 100 В, в то время как напряжение между витками не превышает десятков вольт.
В практике нашли распространение два метода, дающие возможность подвергнуть межвитковую изоляцию воздействию достаточно высоких напряжений, причем такое воздействие может обеспечиваться на всех стадиях технологического процесса изготовления обмоток и сборки ЭМ [2.5].
Первый метод заключается в индуцировании в витках обмотки напряжения повышенной частоты. Для этой цели секции обмотки надеваются на сердечник из листовой стали (со съемным ярмом), в котором с помощью обмотки возбуждения, питающейся от источника тока с частотой примерно 10 кГц, возбуждается магнитный поток. Такое испытание дает возможность повышения ЭДС, приходящейся на один виток, в 200 раз по сравнению с испытаниями частотой 50 Гц. Указанный метод применим и для испытания полюсных многовитковых катушек.
Для обнаружения замыкания между витками применяется ряд методов, простейший из которых — приближение к виткам испытуемой секции П-образного контрольного сердечника из тонкой электротехнической стали с намотанной на нем многовитковой измерительной катушкой, соединенной с электронным вольтметром. Появление тока в короткозамкнутых витках индуцирует в этой катушке ЭДС, регистрируемую чувствительным вольтметром.
После укладки секций в пазы (до соединения параллельных ветвей) ЭДС повышенной частоты индуцируется с помощью П-образного сердечника с обмоткой возбуждения, который прикладывается к головкам двух зубцов, между которыми в пазу лежит сторона испытуемой секции.
Для обнаружения повреждения межвитковой изоляции используется описанный выше контрольный сердечник, прикладываемый к тем же зубцам на некотором расстоянии (чтобы избежать возникновения взаимной индукции) от индукторного. Оба сердечника крепятся на общей рукоятке.
Если расположить по окружности ротора или расточки статора на одинаковом расстоянии р индукторных сердечников, где р — число пар полюсов, то испытание можно вести на полностью соединенной по схеме обмотке [2.6]. Контрольный сердечник перемещается при этом по окружности ротора или статора.
Метод обнаруживает не только замыкания между витками, но и ошибки в числе витков и шаге секций, схеме соединения, а также наличие двойного замыкания на землю.
Другим методом испытания межвитковой изоляции (и обнаружения различных дефектов обмоток) является метод «бегущей волны». При этом методе на вывод обмотки с помощью тиратронных преобразователей и переключателей подаются импульсы высокого напряжения с крутым фронтом. Частота повторения импульсов 50—60 раз в секунду.
При прохождении такой волны напряжения по обмотке (с числом витков в секции до 2—3) имеется возможность создать напряжение между витками до 1—2 кВ.
Для обнаружения пробоя существует ряд методов. В основе одного из них лежит сравнение формы импульсов, прошедших через две какие- либо части одной обмотки (фазы, секции). Для этой цели с помощью переключателя импульс подается поочередно на входные концы этих частей обмотки. Выходные концы их присоединяются к делителю напряжения, соединенному с экраном электронного осциллографа (ЭО). При появлении дефекта в одной из частей, например замыкании между витками, форма импульса меняется и изображение на ЭО раздваивается.
Существуют способы установления места повреждения изоляции [2.5]. При этом вместо сравнения двух частей обмотки можно использовать сравнение испытуемой обмотки и эталонной. Этот метод предоставляет существенные удобства при контроле изоляции в процессе производства.

9.

• единицы и называется коэффициентом импульса.

Зависимость пробивного напряжения от времени

приложения напряжения называют кривой жизни

электрической изоляции. Снижение Uпр от времени

происходит

из-за

электрического

старения изоляции — необратимых процессов под

действием

тепла

и

электрического

поля. Электрической прочностью называют

напряженность электрического поля при пробое

изоляции

в

однородном

электрическом

поле Eпр=Uпр/h, где Eпр, В/м, Uпр — пробивное

напряжение, В, h — толщина диэлектрика, м. Кроме

В/м электрическую прочность часто выражают в

МВ/м или кВ/мм. Соотношение между этими

единицами такое: 106 В/м = 1 МВ/м = 1 кВ/мм.

Контроль над изоляцией

Периодичность проведения контрольных измерений состояния изоляционного покрытия устанавливается нормативными документами:

  • раз в шесть месяцев — передвижные и переносные токоприемники;
  • ежегодно — проводники и приемники наружной установки, а также при их прокладке в условиях повышенной опасности;
  • каждые три года — все остальное электрооборудование.

Периодичность замеров для различных объектовПериодичность замеров для различных объектов

На промышленных и энергетических предприятиях установлена своя периодичность проверки, согласно утвержденным инструкциям.

к содержанию ↑

Газообразные диэлектрики

Наиболее распространенными газообразными диэлектриками являются воздух, азот, водород и элегаз. Электроизоляционные газы делятся на естественные и искусственные. К естественным относится воздух, которые применяется в качестве изоляции между токоведущими частями линий электропередач и электрических машин. В качестве изолятора воздух имеет недостатки, которые делает невозможным его использование в герметичных устройствах. Из-за наличия высокой концентрации кислорода воздух является окислителем, и в неоднородных полях проявляется низкая электрическая прочность воздуха.

В силовых трансформаторах и высоковольтных кабелях в качестве изоляции используют азот. Водород, кроме электроизоляционного материала, также представляет собой принудительное охлаждение, поэтому часто используется в электрических машинах. В герметизированных установках чаще всего применяют элегаз. Заполнение элегазом делает устройство взрывобезопасным. Применяется в высоковольтных выключателях благодаря своим дугогасящим свойствам.

10.

• Электрический

пробой

разрушение

диэлектрика,

обусловленное

ударной

ионизацией электронами или разрывом связей

между атомами, ионами или молекулами в

течение 10 -5-10 -6 с. Eпр при электрическом

пробое зависит главным образом от

внутреннего

строения

диэлектрика

и

практически не зависит от температуры,

частоты

приложенного

напряжения,

геометрических размеров образца, вплоть до

толщин 10 -4-10 -5 см. По сравнению с воздухом,

у которого Eпр » 3 МВ/м, наибольших значений

при электрическом пробое достигает Eпр у

твердых диэлектриков — 102-103МВ/м, в то

время как у тщательно очищенных жидких

диэлектриков составляет примерно 102 МВ/м.

Классификация

Как правило, защитные средства отличаются ярким цветовым оттенком, выделяющим их из прочей резиновой обуви.

Комплектация моделей содержит:

  • резиновый верх;
  • монолитную рифлёную подошву;
  • текстильные подкладки;
  • внутренние вставки, сохраняющие форму и страхующие от повреждений.

Определяющим показателем в характеристиках диэлектрической обуви считается ток утечки, который возникает при контакте проводника с заземлением через изоляцию. Для защитных галош значение этого показателя не должно превышать 2,5 мА.

Заводские обозначения размеров защитной обуви в эквиваленте штихмасовой системы.

Ходовые размеры не в каждом случае способны удовлетворить потребности исполнителей, все же редкие размеры 292 (иначе – 39), а также 352 (иначе – 47) не выпускают серийно. Такие модели возможно получить, только заказав в индивидуальном порядке. Текущая стоимость диэлектрических галош сегодня составляет 750 руб.

Также читайте: Оказание первой помощи при поражении электрическим током

Литература

  1. Основы кабельной техники/ под ред. И.Б. Пешкова. — М.: Издательский центр «Академия», 2006. – 432 с.
  2. Физика диэлектриков. Г. А. Воробьев, Ю. П. Похолков, Ю. Д. Королев. Учебники Томского политехнического университета. 2003 г.
  3. Техника высоких напряжений (изоляция и перенапряжения). А.С. Красько, Е.Г. Пономаренко. Курс лекций. Часть 1. БНТУ. 2012 г.

Высоковольтные конденсаторы.

В конденсаторах для высоких напряжений, которые используются в радиопередающих устройствах, в качестве изолятора часто применяется слюда. Конденсаторы для очень высоких напряжений обычно изготавливаются из металлической фольги с большим числом слоев диэлектрической бумаги, помещенных в заполненный маслом контейнер, или из металлических пластин, разделенных газообразным или жидким диэлектриком. В таких конструкциях для высокочастотных конденсаторов, в которых важно иметь низкие диэлектрические потери, в качестве диэлектрика используется и вакуум.

21.

• увеличивает пробивное напряжение на

200-300%.

• Добавка к жидкости частиц вещества с

диэлектрической проницаемостью

большей, чем у жидкости, приводит к росту

тока в несколько раз.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...