Источники питания с конденсаторным делителем напряжения

Содержание
  1. Принцип делителя напряжения
  2. Схема делителя напряжения на резисторах
  3. Назначение и применение
  4. Резистивный делитель напряжения
  5. Подбор/расчет резисторов для делителя напряжения
  6. Схема
  7. Что такое делитель тока
  8. Пример 2
  9. Формула для расчёта делителя напряжения
  10. Применение делителя напряжения на резисторах
  11. Потенциометры
  12. Резистивные датчики
  13. Пример работы делителя напряжения на фоторезисторе.
  14. Применяя делитель напряжения на резисторах, необходимо понимать и помнить следующее:
  15. Делитель напряжения на переменном резисторе
  16. Виды и принцип действия
  17. Как работает
  18. Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях
  19. Делитель напряжения на катушках индуктивностях
  20. Практическое применение параллельного и последовательного соединения
  21. Пример работы делителя напряжения на фоторезисторе.
  22. Потенциометры
  23. Нелинейные делители
  24. Что такое делитель тока
  25. Схема традиционного резисторного делителя напряжения
  26. Применимость

Принцип делителя напряжения

Это правило применяют при расчетах электросхем, упрощающих решение. Также оно действительно и для простых схем.

Важно! Основная концепция правила: напряжение делится между двумя резисторами, соединенными последовательно, в прямой зависимости от их сопротивления.

Когда выполняется практический расчет делителя напряжения, составляется электросхема, и выводятся необходимые формулы.

Схема делителя напряжения на резисторах

Схема делителя напряжения включает в себя входной источник напряжения и два резистора. Ниже вы можете увидеть несколько схематических вариантов изображения делителя, но все они несут один и тот же функционал.

Профессиональный цифровой осциллограф

Количество каналов: 1, размер экрана: 2,4 дюйма, разрешен…

Подробнее

схематическое обозначение делителя напряжения
Обозначим резистор, который находится ближе к плюсу входного напряжения (Uin) как R1, а резистор находящийся ближе к минусу как R2. Падение напряжения (Uout) на резисторе R2 — это пониженное напряжение, полученное в результате применения резисторного делителя напряжения.

Назначение и применение

Для преобразования переменного напряжения применяется трансформатор, благодаря которому можно сохранить достаточно высокое значение тока. Если необходимо в электрическую цепь подключить нагрузку, потребляющую небольшой ток (до сотен мА), то использование трансформаторного преобразователя напряжения (U) не является целесообразным.

В этих случаях можно использовать простейший делитель напряжения (ДН), стоимость которого существенно ниже. После получения необходимой величины U выпрямляется и происходит подача питания на потребитель. При необходимости для увеличения силы тока (I) нужно использовать выходной каскад увеличения мощности. Кроме того, существуют делители и постоянного U, но эти модели применяются реже остальных.

ДН часто применяются для зарядок различных устройств, в которых нужно получить из 220 В более низкие значения U и токов для разного типа аккумуляторов. Кроме того, целесообразно использовать устройства для деления U для создания электроизмерительных приборов, компьютерной техники, а также лабораторных импульсных и обыкновенных блоков питания.

Резистивный делитель напряжения

В общем случае устройства этого типа выполняют преобразование по формуле Uвых=Uвх*К, где:

  • Uвх (вых) – напряжения на входе и выходе, соответственно;
  • К – корректирующий множитель, обозначающий передающие способности узла.

Если взять первый пример из рис. выше, для уточнения сути процессов подойдет второй закон Кирхгофа. В соответствии с этим правилом, общее значение напряжений на последовательно соединенных резисторах будет равно сумме ЭДС на каждом элементе. Так как ток не изменяется в замкнутом контуре, для расчета можно использовать закон Ома:

U (напряжение) = I (ток) * R (электрическое сопротивление)

Нижнюю часть схемы (плечо) используют для получения необходимого изменения входного параметра.

Подбор/расчет резисторов для делителя напряжения

Поставим себе задачу собрать определенный делитель напряжения. Нам понадобится рассчитать два резистора для делителя напряжения таким образом, чтобы при входном питающем напряжении Vвх = 5 В, выходное напряжение  было равно Vвых=1,9 В.

Итак, с чего начать рассчитывать резисторы делителя напряжения? С закона Ома для участка цепи!

Сила тока, который будет проходить через делитель напряжения при напряжении на входе Vcc=Vвх, равна

$$ I = \frac{ V_{CC} }{R_1 + R_2} $$

Отсюда выходное напряжение Vвых=Vout

$$ V_{out} = U_2 = I \times R_2 = \frac{R_2 \cdot V_{CC}}{R_1 + R_2} $$

Понятно, что чем больше сопротивление резистора R1, тем меньше будет значение выходного напряжения, снимаемого с делителя напряжения на резисторах R1 и R2.

А теперь решим поставленную выше задачу для подбора резисторов делителя напряжения при напряжении на входе делителя = 5В и требуемом выходном напряжении с делителя = 1,9В.

Пример расчета резисторов делителя напряженияРасчет резисторов делителя напряжения

Итак, собственно, само решение. Подбираем резисторы для делителя напряжения, исходя из вышеупомянутого закона Ома. Отношение выходного напряжения делителя ко входному будет равно 1,9 В / 5 В. Помним, что резистор R2 делителя напряжения подсоединен к земле.

Пример расчета резисторов делителяПример расчета резисторов делителя

Итак. Вход = 5 В. Выход = 1,9 В.

Ответ: R1 = 620 Ом. R2 = 380 Ом.

Конечно же, можно подобрать и другие резисторы, например, 62 Ома и 38 Ом или 295,26 Ом и 481,74 Ом. Главное, чтобы отношение (R2/(R1+R2)) было равно 0,38 (или 1,9/5).

Схема

Вот четыре варианта возможного исполнения:


Схема интегрального делителя напряжения

Можно добиться разных значений, изменяя схему подключения и ориентируясь на задачи. Каждый элемент можно использовать как регулятор для напряжения, необходимо только правильно выстроить цепь, чтобы были отображены именно необходимые данные.

Что такое делитель тока

Делитель тока — это устройство, позволяющее разделить поток тока на две части, чтобы в дальнейшем использовать одну из них. Он нужен, когда устройство не работает с большим током и нужно отделить его меньшее количество, необходимое для использования аппаратуры.

Состоит делитель обычно из двух резисторов, параллельно соединённых, так в каждом из них будет уменьшаться ток.
При последовательном соединении будет уменьшаться напряжение.

Пример 2

Общий ток цепи, содержащей два соединенных параллельно резистора

R1 =70 Ом иR2 =90 Ом, равен 500 мА. Определить токи в каждом из резисторов. Два последовательно соединенных резистора ничто иное, как делитель тока . Определить токи, протекающие через каждый резистор можно с помощью формулы делителя, при этом напряжение в цепи нам не нужно знать, потребуется лишь общий ток и сопротивления резисторов.

Токи в резисторах

В данном случае удобно проверить задачу с помощью первого закона Кирхгофа, согласно которому сумма токов сходящихся, в узле равна нулю.

Если вы не помните формулу делителя тока, то можно решить задачу другим способом. Для этого необходимо найти напряжение в цепи, которое будет общим для обоих резисторов, так как соединение параллельное. Для того чтобы его найти, нужно сначала

Выполняет сразу несколько очень важных задач: служит ограничителем электрического тока в цепи , создает падение напряжения на отдельных ее участках и разделяет пульсирующий ток.

Помимо номинального сопротивления, одним из наиболее важных параметров резистора

является рассеиваемая мощность. Она зависима от напряжения и тока. Мощность — это то тепло, которое выделяется на резисторе, когда под воздействием протекающего тока он нагревается. При пропуске тока, превышающего заданное значение мощности, резистор может сгореть.

Мощность постоянного тока может быть рассчитана по простой формуле P(Вт) = U(В) * I(А)

,

  • P(Вт) — мощность,
  • U(В) — напряжение,
  • I(А) — ток.

Чтобы избежать сгорания резистора тока, необходимо учитывать его мощность. Соответственно, если схема указывает на замену резистора с мощностью 0,5 Ватт — 0,5 Ватт в данном случае — минимум.

Мощность резистора

может зависеть от его размеров. Как правило, чем меньше резистор — тем меньше мощность его рассеивания. Стандартный ряд мощностей резисторов тока состоит из значений:

  • 0.125 Вт
  • 0.25 Вт
  • 0.5 Вт
  • Более 2 Вт

Рассмотрим на примере: номинальное сопротивление нашего резистора

тока — 100 Ом. Через него течет ток 0,1 Ампер. Чтобы , на которую рассчитан наш резистор тока, необходимо воспользоваться следующей формулой: P(Вт) = I2(А) * R(Ом),

  • P(Вт) — мощность,
  • R(Ом) — сопротивление цепи (в данном случае резистора),
  • I(А) — ток, протекающий через резистор.

Внимание!

При расчётах следует соблюдать размерность. Например, 1 кА= 1000 А. Это же касается и других величин.

Итак, рассчитаем мощность для нашего резистора тока: P(Вт) = 0,12(А) *100 (Ом)= 1(Вт)

Получилось, что минимальная мощность нашего резистора составляет 1 Ватт. Однако в схему следует установить резистор

с мощностью в 1,5 — 2 раза выше рассчитанной. Соответственно идеальным для нас будет резистор тока мощностью 2 Вт.

Бывает, что ток, протекающий через резистор неизвестен. Для расчёта мощности в таком случае предусмотрена специальная формула:

Соединение цепи может быть последовательным и параллельным. Однако никакого труда не составляет рассчитать мощность резистора тока

как в параллельной, так и в последовательной цепи. Следует учитывать лишь то, что в последовательно цепи через резисторы течет один ток.

Например, нам необходимо произвести замену резистора

тока сопротивлением 100 Ом. Ток, протекающий через него — 0,1 Ампер. Соответственно, его мощность — 1 Ватт. Следует рассчитать мощность двух соединенных последовательно резисторов для его замены. Согласно формуле расчёта мощности, мощность рассеивания резистора на 20 Ом — 0,2 Вт, мощность резистора на 80 Ом — 0,8 Вт. Стандартный ряд мощностей поможет выбрать резисторы тока:

Формула для расчёта делителя напряжения

Как рассчитать резистор для понижения напряжения ?

Для расчёта получаемой в итоге нагрузки, нужно знать следующие данные: U исходное и значение сопротивления в каждом из составных элементов.

Делитель рассчитывается с учётом того, что проходящий через него ток минимум в 10 раз больше, чем на выходе и меньше, чем входящий в сеть.

Можно рассчитать общее сопротивление в резисторах:

R=R1*R2/(R1+R2)

В параллельно соединённых резисторах U1=U2, из это можно сделать вывод, что в сети протекает общий ток: I=I1+I2

Найти общий ток можно, зная закон Ома

Применение делителя напряжения на резисторах

В радиоэлектронике есть много способов применения делителя напряжения. Вот только некоторые примеры где вы можете обнаружить их.

Потенциометры

Потенциометр представляет собой переменный резистор, который может быть использован для создания регулируемого делителя напряжения.

Изнутри потенциометр представляет собой резистор и скользящий контакт, который делит резистор на две части и передвигается между этими двумя частями. С внешней стороны, как правило, у потенциометра имеется три вывода: два контакта подсоединены к выводам резистора, в то время как третий (центральный) подключен к скользящему контакту.

Если контакты резистора подключения к источнику напряжения (один к минусу, другой к плюсу), то центральный вывод потенциометра будет имитировать делитель напряжения.

Переведите движок потенциометра в верхнее положение и напряжение на выходе будет равно входному напряжению. Теперь переведите движок в крайнее нижнее положение и на выходе будет нулевое напряжение. Если же установить ручку потенциометра в среднее положение, то мы получим половину входного напряжения.

Резистивные датчики

Большинство датчиков применяемых в различных устройствах представляют собой резистивные устройства. Фоторезистор представляет собой переменный резистор, который изменяет свое сопротивление, пропорциональное количеству света, падающего на него. Так же есть и другие датчики, такие как датчики давления, ускорения и термисторы и др.

Так же резистивный делитель напряжения помогает измерить напряжение при помощи микроконтроллера (при наличии АЦП).

Пример работы делителя напряжения на фоторезисторе.

Допустим, сопротивление фоторезистора изменяется от 1 кОм (при освещении) и до 10 кОм (при полной темноте). Если мы дополним схему постоянным сопротивлением примерно 5,6 кОм, то мы можем получить широкий диапазон изменения выходного напряжения при изменении освещенности фоторезистора.

Как мы видим, размах выходного напряжения при уровне освещения от яркого до темного получается в районе 2,45 вольт, что является отличным диапазоном для работы большинства АЦП.

Помогите проекту. Поделитесь с друзьями.

rezistornyj-delitel-napryazheniya_9.png

Рассмотрим, как рассчитать практически любой делитель напряжения на резисторах. Преимущественное большинство радиоэлектронных элементов и микросхем питаются относительно низким напряжением – 3…5 В. А многие блоки питания выдают U = 9 В, 12 В или 24 В. Поэтому для надежной и стабильной работы различных электронных элементов необходимо снижать величину напряжения до приемлемого уровня. В противном случае может наступить пробой радиоэлектронных элементов. Особенно следует уделять внимание микросхемам – наиболее чувствительным элементам к повышенному напряжению.

rezistornyj-delitel-napryazheniya_10.jpg

Существуют много способов, как снизить напряжение. Выбор того или другого способа зависит от конкретной задачи, что в целом определяет эффективность всего устройства. Мы рассмотрим самый простой способ – делитель напряжения на резисторах, который, тем не менее, довольно часто применяется на практике, но исключительно в маломощных цепях, что поясняется далее.

Чтобы сделать и рассчитать простейший делитель напряжения достаточно соединить последовательно два резистора и подключить их источнику питания. Такая схема очень распространенная и применяется более чем в 90 % случаев.

rezistornyj-delitel-napryazheniya_11.jpg

Вход схемы имеет два вывода, а выход – три. При одинаковых значения сопротивлений R1 и R2 выходные напряжения Uвых1 и Uвых2 также равны и по величине вдвое меньше входного Uвх. Причем выходное U можно сниматься с любого из резисторов – R1 или R2. Если сопротивления не равны, то выходное U будет на резисторе большего номинала.

Точное соотношение Uвых1 к Uвых2 рассчитаем, обратившись к закону Ома. Резисторы вместе с источником питания образуют последовательную цепь, поэтому величина электрического тока, протекающего через R1 и R2 определяется отношением напряжения источника питания Uвх к сумме сопротивлений:

rezistornyj-delitel-napryazheniya_12.jpg

Следует обратить внимание, чем больше сумма сопротивлений, тем меньший ток I при том же значении Uвх.

Далее, согласно закону Ома, подставив значение тока, находим Uвых1 и Uвых2:

rezistornyj-delitel-napryazheniya_13.jpg

rezistornyj-delitel-napryazheniya_14.jpg

Путем подстановки в две последние формулы значение из самой первой формулы, находим значение выходного U в зависимости от входного и сопротивлений двух резисторов:

rezistornyj-delitel-napryazheniya_15.jpg

rezistornyj-delitel-napryazheniya_16.jpg

Применяя делитель напряжения на резисторах, необходимо понимать и помнить следующее:

  1. Коэффициент полезного действия такой схемы довольно низкий, поскольку только часть мощности источника питания поступает к нагрузке, а остальная мощность преобразуется в тепло, выделяемое на резисторах. Чем больше понижается напряжение, тем меньше мощности от источника питания поступит к нагрузке.
  2. Так как нагрузка подключается параллельно к одному из резисторов делителя, то есть шунтирует его, то общее сопротивление цепи снижается и происходит перераспределение падений напряжений. Поэтому сопротивление нагрузки должно быть гораздо больше сопротивления резистора делителя. В противном случае схема будет работать нестабильно с отклонением от заданных параметров.
  3. Распределение U между R1 и R2 определяется исключительно их относительными значениями, а не абсолютными величинами. В данном случае неважно, будут ли R1 и R2 иметь значение 2 кОм и 1 кОм или 200 кОм и 100 кОм. Однако при более низких значениях сопротивлений можно получить большую мощность на нагрузке, но следует помнить, что и больше мощности преобразуется в тепло, то есть израсходуется невозвратно впустую.

Также иногда находят применение и более сложные делители напряжений, состоящие из нескольких последовательно соединенных резисторов.

Делитель напряжения на переменном резисторе

Схему делителя напряжения на переменном резисторе называют схемой потенциометра. Вращая рукоятку громкости музыкального центра или автомагнитолы, вы таким действием плавно изменяете напряжение, подаваемое на усилитель модности звуковой частоты. Принцип работы и сборка простейшего усилителя мощности уже были ранее рассмотрены .

При перемещении (вращении) ручки переменного резистора сверху вниз по чертежу происходит плавное изменение U от значения источника питания до нуля.

В звуковой технике главным образом применяются переменные резисторы с логарифмической зависимостью, поскольку слуховой аппарат человек воспринимает звуки с данной зависимостью. Для регулирования уровня звука одновременно по двум каналам используют сдвоенные переменные резисторы.

В качестве делителя напряжения находят применение переменные резисторы, имеющие следующие зависимости сопротивления от угла поворота ручки: логарифмическую, линейную и экспоненциальную. Конкретный тип зависимости применяется для решения отдельной задачи.

Помогите проекту. Поделитесь с друзьями.

Виды и принцип действия

В основе принципа действия устройства, уменьшающего нагрузку сети, лежит первый закон Кирхгофа: сумма сходящихся в узле токов равна нулю.

Принцип работы у всех одинаковый: в них есть U исходное: такое же, как в источнике питания и получаемое на выходе из сети, зависящее от соотношения резисторов в плечах делителя.
Схема, позволяющая понять принцип действия:

Резисторный-делитель-напряжения

Различают разные устройства, в зависимости от элементов в составе:

  • резистивный — более популярен из-за простоты устройства.
  • ёмкостный;
  • индуктивный.

Как работает

На практике использование устройств несколько сложнее, чем просто рассчитать требуемые значения для элементов. Использование схемы замещения для делителей напряжения усложняет реалистичный учет фазовых и амплитудных характеристик. Эта проблема может быть решена исключительно экспериментальным путём. Затруднительно так сделать только если наблюдаются очень высокие частоты.


Графическое изображение работы

В качестве доступной альтернативы используется экспериментальное определение реакции схемы на прямоугольный импульс. Его суть — наблюдение за состоянием, когда на входе происходит скачкообразное изменение напряжения. При единичном воздействии можно наблюдать особенности работы благодаря переходной функции измерительной схемы.

Реакция определяется двумя способами:

  • Первый предполагает, что на вход полностью собранной схемы подают периодически импульсы с амплитудой в 100В (50 или 100 раз в секунду). Фронт их нарастания должен составлять меньше 10-9 с. Получение таких импульсов не является делом сложным. Для этого можно воспользоваться механическими коммутаторами с герконом или ртутным реле. На выходе схемы измеряется реакция посредством осциллографа, на котором присутствует широкополосной усилитель, величина пропускания которого составляет до 109 Гц.
  • Второй способ используется для схем, у которых напряжение составляет несколько десятков киловольт. В таком случае делают крутой срез посредством малоиндуктивного искрового промежутка, помещенного в условия сжатого газа. На выходе с помощью обычного осциллографа записывается реакция. Также вместо среза часто обращаются к использованию разряда заряженного кабеля и волнового сопротивления через искровой промежуток.

Описывая работу делителей напряжения, нельзя обойти вниманием постоянную времени. Чтобы правильно измерять показатели быстропротекающих процессов, необходимо добиться различия в 5-10 раз. Постоянная времени делителя должна быть меньше характеристического времени процесса. Если не получить разницу в 5-10 раз, то будут фиксироваться различные искажения. Наиболее вероятные — это затягивание фронта вместе с уменьшением амплитуды сигнала на выходе в сравнении с расчетными показателями.

Важно! При выборе делителя в первую очередь внимание обращают на его возможное влияние, оказываемое на источник напряжения, равно как и искажения основного параметра при измерении. Например, в случае использования обычных ГИН допустимыми считаются резисторные, емкостные и смешанные устройства, но только при соблюдении оговоренных условий. К таковым относятся значения емкости плеча высокого напряжения и сопротивление.

Вам это будет интересно Расцветка шин по фазам

Расчет делителя напряжения на резисторах, конденсаторах и индуктивностях

Делитель на резисторах — отличается своей универсальностью: используют при постоянном и переменном токе, но только при пониженном сопротивлении цепи.

Согласно закону Ома и правилу Кирхгофа через всю цепь будет проходить один и тот же ток.

Тогда на каждом из резисторов: U1= I х R1 и U2 = I х R2 Ток в цепи устройства:

Уменьшение на конденсаторах применяют для цепей с высоким переменным током. В нём минимальная потеря энергии на выходе. Реактивное сопротивление конденсатора зависит от его электроёмкости и частоты напряжения в цепи.

Формула для вычисления сопротивления:

Делитель на индуктивностях используется при переменном низком токе на высоких частотах. Сопротивление катушки переменного тока прямо пропорционально зависит от индуктивности и частоты. У провода катушки имеется активное сопротивление, из-за чего мощность такого прибора больше, чем у аналогов.

Сопротивление катушки находится по формуле:

Делитель напряжения на катушках индуктивностях

Делитель напряжения на индуктивностях применяются в радио устройствах и считаются комплексными сопротивлениями с распределенными параметрами в схемах согласования… В общем если вы не специалист в этой области то вам такое и не надо. Но для общего развития приведу схему с формулой

Делитель напряжения на индуктивностях

Замечу, что приведенная формула чисто теоретическая и не учитывает момент включения, насыщение сердечника, межвитковую ёмкость, скин-эффект, механические характеристики.

P.S. Спасибо пользователям «Юра» и «Bagira» с форума Полный писец за помощь в написании статьи.

Практическое применение параллельного и последовательного соединения

Составные элементы прибора соединяют в цепь, чтобы получить из сети нужную для устройства часть энергии.

Пример работы делителя напряжения на фоторезисторе.

Исходное сопротивление меняется от 1кОм в момент полного освещения до 10кОм при отсутствии света, то можно увеличить диапазон сопротивления. При добавлении резисторов с R=5,6кОм, исходящее напряжение меняется следующим образом:

Освещённость R1 (кОм) R2(кОм) R2/(R1+R2) U выходное (В)
Яркая 5,6 1 0,15 0,76
Тусклая 5,6 7 0,56 2,78
Темнота 5,6 10 0,67 3,21

Таким образом, увеличивается диапазон выходного напряжения, и оно становится подходящим для большинства сетей.

Потенциометры

Потенциометры используют в качестве делителя в системе с постоянным током. Их применяют в основном для изменения отдельных параметров в механизме.

Нелинейные делители

Мы упомянули, что к нелинейным делителям относится параметрический стабилизатор. В простейшем виде он состоит из резистора и стабилитрона. У стабилитрона условное обозначение на схеме похоже на обычный полупроводниковый диод. Разница лишь в наличии дополнительной черты на катоде.

Расчет происходит, отталкиваясь от Uстабилизации стабилитрона. Тогда если у нас есть стабилитрон на 3.3 вольта, а Uпитания равно 10 вольт, то ток стабилизации берут из даташита на стабилитрон. Например, пусть он будет равен 20 мА (0.02 А), а ток нагрузки 10 мА (0.01 А).

Тогда:

R=12-3,3/0,02+0,01=8,7/0,03=290 Ом

Разберемся как работает такой стабилизатор. Стабилитрон включается в цепь в обратном включении, то есть если Uвыходное ниже Uстабилизации – ток через него не протекает. Когда Uпитания повышается до Uстабилизации, происходит лавинный или туннельный пробой PN-перехода и через него начинает протекать ток, который называется током стабилизации. Он ограничен резистором R1, на котором гасится разница между Uвходным и Uстабилизации. При превышении максимального тока стабилизации происходит тепловой пробой и стабилитрон сгорает.

ВАХ

Кстати иногда можно реализовать стабилизатор на диодах. Напряжение стабилизации тогда будет равно прямому падению диодов или сумме падений цепи диодов. Ток задаете подходящий под номинал диодов и под нужды вашей схемы. Тем не менее такое решение используется крайне редко. Но такое устройство на диодах лучше назвать ограничителем, а не стабилизатором. И вариант такой же схемы для цепей переменного тока. Так вы ограничите амплитуду переменного сигнала на уровне прямого падения — 0,7В.

Диоды

Вот мы и разобрались что это такое делитель напряжения и для чего он нужен. Примеров, где применяется любой из вариантов рассмотренных схем можно привести еще больше, даже потенциометр в сущности является делителем с плавной регулировкой коэффициента передачи, и часто используется в паре с постоянным резистором. В любом случае принцип действия, подбора и расчетов элементов остается неизменным.

Напоследок рекомендуем посмотреть видео, на котором более подробно рассматривается, как работает данный элемент и из чего состоит:

Материалы по теме:

  • Способы понижения напряжения
  • Что такое активная, реактивная и полная мощность
  • Как работает реле напряжения

Что такое делитель тока

Какие ассоциации у вас возникают при словосочетании “делитель тока”? У меня сразу возникает ассоциация с делителем потока. Давайте представим себе реку, у которой очень большой поток.

Делитель тока

Это поток воды бежит с очень большой скоростью! Он смывает на своем пути камни, землю, деревья. Представьте, что эта река находится рядом с вашим домом. Через год-два ваш дом смоет под чистую! Чтобы этого не произошло, надо ослабить течение реки, чтобы ее поток был слабый. Например как здесь:

Делитель тока

Но как это сделать? А почему бы нам не прорыть большой канал, чтобы бОльшая часть воды текла через него. А это хорошая идея не так ли?

Делитель тока

Весь смак заключается в том, что в каждой отдельной речке скорость воды будет меньше. В электротехнике и электронике все тоже самое! Река – это провод, сила потока – это сила тока, ширина реки – сопротивление, напряжение – угол наклона реки. Все элементарно и просто!

Схема традиционного резисторного делителя напряжения

Для применения делителя напряжения нам надо уметь рассчитывать три величины: напряжение на выходе делителя, его эквивалентное выходное сопротивление, его входное сопротивление. С напряжением все понятно. Эквивалентное выходное сопротивление скажет нам, насколько изменится напряжение на выходе с изменением тока нагрузки делителя. Если эквивалентное выходное сопротивление равно 100 Ом, то изменение тока нагрузки на 10 мА приведет к изменению напряжения на выходе на 1 В. Входное сопротивление показывает, насколько делитель нагружает источник сигнала или источник питания. Дополнительно посчитаем коэффициент ослабления сигнала. Он может пригодиться при работе с сигналами сложной формы.

( 2 оценки, среднее 4.5 из 5 )

Применимость

Делитель напряжения подходит

для получения необходимого заниженного напряжения в случаях, когда подключенная нагрузка потребляет небольшой ток (доли или единицы миллиампер). Примером подходящего использования является считывание напряжения аналоговым входом микроконтроллера, управление базой/затвором транзистора .

Делитель не подходит

для подачи напряжения на мощных потребителей вроде моторов или светодиодных лент.

Чем меньшие номиналы выбраны для делящих резисторов, тем больше энергии расходуется впустую и тем выше нагрузка на сами резисторы. Чем номиналы больше, тем больше и дополнительное (нежелательное) падение напряжения, провоцируемое самой нагрузкой.

Если потребление тока нагрузкой неравномерно во времени, V out

также будет неравномерным.

Делитель напряжения применяется, если нужно получить заданное напряжение при условии стабилизированного питания. Сейчас мы поговорим о постоянном токе и резисторных делителях. О делителях с использованием конденсаторов, диодов, стабилитронов, индуктивностей и других элементов будет отдельная статья. Подпишитесь на новости, чтобы ее не пропустить. В конце для примера расскажу, как сделать делитель напряжения для осциллографа, чтобы снимать осциллограммы высокого напряжения.

Резисторные делители также могут применяться для уменьшения в заданное количество раз сигналов сложной формы. На делителях напряжения с регулируемым коэффициентом ослабления строятся, например, регуляторы громкости.

Вашему вниманию подборка материалов:
Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...