Энциклопедия по машиностроению XXL

Содержание
  1. Электризация тел. Два рода электрических зарядов
  2. Оборудование, материаловедение, механика и …
  3. Определение
  4. Лимонная батарейка
  5. Двойкам нет
  6. Потенциал электрического поля. Электроемкость
  7. Закон Ома
  8. Самоиндукция. Индуктивность
  9. Три способа электризации тел
  10. Электризация трением
  11. Электризация прикосновением
  12. Электризация наведением (электростатическая индукция)
  13. Учет электризации
  14. Ответы
  15. В повседневной жизни
  16. Примеры явления
  17. Свойства наэлектризованных тел
  18. Показательные опыты
  19. Молнии
  20. Передача (проведение) электричества
  21. Меры безопасности
  22. Порядок действий
  23. Польза и вред статического электричества – Все об электричестве
  24. Причины возникновения статистического электричества
  25. Вред статистического электричества для организма человека
  26. Как снять статическое электричество с человека
  27. Неприятное статическое электричество и защита от него
  28. Использование статистического напряжения

Электризация тел. Два рода электрических зарядов

«Солнечным камнем» называли в Древней Греции янтарь – затвердевшую сосновую смолу. Греки очень любили изделия из янтаря за его блеск и солнечный цвет.

1llllЯнтарная смола Источник

Давно превратилась в легенду история открытия способности янтаря после трения о что-нибудь притягивать к себе другие тела. Вот о чем она говорит:

2ooo

Природу этих явлений удалось объяснить только во второй половине двадцатого века, а сами явления, названные в честь янтаря электрическими, уже давно служили человеку. Электрических явлений очень много. Среди них, электризация – получение телом способности к притяжению после трения, касания или влияния.

3ooo

Электризация наблюдается не только у двух твердых тел. Это происходит, когда жидкость течет по металлу или разбрызгивается на множество капель при ударе о твердое тело.

4yyyy
Источник

Зафиксированы случаи, когда в темное ночное время были не только слышны, но и видны сходящие снежные лавины. Их движение сопровождалось зеленоватым свечением.

Н. Тенсинг, покоритель Гималаев, наблюдал интересное явление, происходящее с его палатками. Они были вставлены друг в друга для сохранения тепла. Во время сильного сухого ветра пространство между палатками заполнялось мелкими искрами. Происходила электризация обледеневших палаток.

Тела, испытавшие на себе электризацию, называются наэлектризованными.

5ttyty
Источник

Такие тела могут повлиять на состояние других тел таким образом, что те тоже становятся наэлектризованными.

Объясняется это передачей электрического заряда от наэлектризованного тела нейтральному. Заряд характеризует величину наэлектризованности тел.

6ooo

Зарядов существует два вида: отрицательные и положительные. Это деление условное. За положительный принято считать заряд, полученный при натирании шелком стеклянного тела. Тот заряд, который получает эбонитовая палочка, потертая о шерсть или мех, получил статус отрицательного заряда. Некоторые тела электризуются, как стекло, и приобретают положительные заряды. Другие, как эбонит, при электризации получают отрицательные заряды.

7ooo

Наэлектризованные тела или заряды влияют друг на друга. Заряды одного знака отталкиваются, а разных знаков – притягиваются.

8ooo

Оборудование, материаловедение, механика и …

Статьи Чертежи Таблицы О сайте Реклама

Для определения параметров удара применяют также датчики, в которых используют электризацию трением-скольжением. Особенность этих датчиков — возможность измерять энергию удара, так как сигнал с датчика прямо пропорционален энергии удара. На рис. 10 приведена схема такого [c.352]

Электростатические сепараторы применяются для тонкой очистки жидкости от электризованных твердых частиц. Принцип действия такого сепаратора заключается в том, что находящиеся в жидкости частицы 1 (рис. 14.6, б) заряжаются статическим электричеством при движении их с диэлектрической жидкостью в результате электризации трением. Попадая в электрическое поле, созданное электродами Зя 4, помещенными в корпус 2 сепаратора, эти частицы притягиваются к тому или другому электроду в зависимости от знака электрического заряда частицы. В момент соприкосновения заряженной частицы с электродом ее заряд может нейтрализоваться. Поэтому для удержания частицы на электроде устанавливаются пористые диэлектрические пластины 5. [c.204]

Знаки зарядов различных минералов при электризации трением  [c.284]

Электризация трением 284 Электрография 288 Электрод проявляющий 295 Электрофильтры мокрые 272 эффективность 269 Электрофотография 288, 292, 293. [c.372]

Поэтому исследования электризации трением производились на трущихся телах непосредственно в процессе их работы с регистрацией моментов возникновения электрических зарядов и изменения их по времени. [c.29]

Необходимо считаться с опасностью взрыва паров бензина при обезжиривании. Причиной взрыва может явиться искра из-за электризации трением в зоне скопления паров. Устранить эту опасность можно ультрафиолетовым облучением рабочего места с целью ионизации и снятия заряда. [c.17]

В данном случае частицы порошка суспензии были заряжены отрицательно. Причиной появления зарядов на частицах в суспензии является электризация частиц трением при их хаотическом перемещении в ацетоне. Это перемещение вызвано двумя силами гравитационными, под действием которых частицы стремятся осесть на дно, и турбулентными, возникающими при работе мешалок. Процесс электризации трением вызывается разделением двойного электрического слоя, когда происходит разрывание контакта между диэлектриками (ацетоном и частицей). Двойной электрический слой возникает на поверхности, как и всегда на границе раздела двух фаз (см. 1 гл. II). [c.73]

Трение друг о друга двух соприкасающихся твердых тел представляет собой сложное физическое явление, сопровождаемое нагревом трущихся тел, их электризацией, разрушением поверхностей, диффузией вещества и т. д. Явление трения можно себе представить как вдавливание, сопровождающееся сцеплением, бугорков шероховатости (иногда волнистости) поверхности одного нз тел в промежутки между бугорками другого, вызывающее при взаимном движении тел деформацию, а иногда и разрушение этих бугорков. Интенсивность такого рода взаимодействия трущихся поверхностей зависит от многих обстоятельств, среди которых наибольшее значение имеют интенсивность сдавливания тел, характеризуемая нормальной составляющей реакции взаимодействия между телами, скорость их относительного перемещения, степень обработки поверхностей, наличие смазки. [c.74]

Электризация мельчайших частиц масла происходит в паровом потоке яз-за трения потока пара с частицами масла о твердые стенки каналов, а также при их сталкиваниях во время конденсации. [c.466]

Нейтрализаторы статического электричества. В ряде отраслей промышленности процессы переработки различных материалов сопровождаются электризацией — возникновением на их поверхностях значительных зарядов статического электричества вследствие трения материала о детали оборудования. Наиболее эффективным средством борьбы с зарядами статического электричества являются радиоизотопные нейтрализаторы. Действие нейтрализатора основано на способности а-частиц, испускаемых радиоактивным изотопом, ионизировать, т. е. делать токопроводящим воздух, через который они проходят. В зависимости от знака зарядов на поверхности материала электрическое поле i(THx зарядов будет перемещать ионы противоположною знака к поверхности и нейтрализовать ее заряды. Одноименные ионы [c.176]

Электризация. При движении жидкого топлива в трубопроводах, насосах, арматуре, гибких металлических шлангах образуются разряды статического электричества,. появляющиеся в результате частичного перехода энергии трения в электрическую. Эти разряды в некоторых случаях достигают высокого потенциала и могут вызвать взрыв паров жидкого топлива. [c.11]

Электростатический метод обогащения основан на действии электрического поля на заряженные частицы. Заряжаются частицы благодаря электризации в электрическом поле или на заряженном электроде, трением и другими способами. [c.54]

Полимерные электроизоляционные материалы обнаруживают способность при определенных условиях накапливать заряды электростатического электричества. Это может происходить при трении поверхностей и других видах контактов, распылении материала, коронном разряде вблизи поверхности. Статическая электризация связана с пожаро- и взрывоопасностью, может привести к нарушению технологического режима изготовления и переработки материалов. Появление высоких потенциалов может стать опасным для обслуживающего персонала. Процессы электризации исследуют с целью ее предотвращения или устранения. [c.412]

В огнеопасных и взрывоопасных помещениях (например, при наличии мучной, угольной или алюминиевой пыли, бензина, воспламеняющихся паров или газов) серьёзные опасения вызывает электризация ремней от трения о шкивы во время работы. [c.715]

Контактная электризация — это передача электростатического заряда частице порошка при соприкосновении ее с металлическим электродом, а также при трении частиц друг о друга. [c.229]

Изучение роли трибоэлектрических эффектов позволило утверждать, что электризация резины не оказывает заметного влияния на трение и износ, т. е. может быть отнесена к сопутствующим эффектам [700, 757]. [c.296]

Внешние среды можно активировать ударными волнами, создаваемыми электрогидравлическими разрядами или взрывом газового или жидкого бризантного вещества. Активация трением осуществляется путем электризации мельчайших частиц жидкофазных или газообразных СОТС при их прохождении через специальные сопла, расположенные перед зоной резания. При этом происходит его ионизация и именно этот процесс в основном оказывает положительное влияние на функциональные действия СОТС. [c.76]

ТРЕНИЕ внешнее — механич. сопротивление, возникающее при относит, перемещении двух соприкасающихся тел в плоскости их касания. Сила сопротивления F, направленная противоположно относит, перемещению тел,наз. силой трения. Т. — диссипативный процесс, сопровождающийся выделением тепла, электризацией тел, их разрушением и др. [c.198]

Минимальная темп-ра, при к-рой может воспламениться каменноугольная пыль, около 800°. Поэтому всякий источник огня, имеющий такую температуру, может явиться причиной взрыва угольной пыли. История взрывов показывает, что некоторые катастрофы явились следствием соприкосновения облака пыли даже с открытым огнем рудничной лампы. Тем более опасно пламя взрывчатых веществ (ВВ), вольтовой дуги и других сильных источников огня. Опытами установлено, что тонкая пыль при своем движении из-за трения пылинок о стенки выработок — может наэлектризоваться настолько, что при известных условиях разряд статич. электричества может явиться причиной взрыва. Особенно легко происходит электризация пыли в потоке воздуха. [c.375]

Электризация частиц трением вызывается разделением двойного электрического слоя при разрыве контакта между двух фаз, в данном случае между взвешенной частицей и частицей среды. [c.253]

Зарядка частиц проявляющего порошка может происходить или прямым путем при помощи сопла, через которое выдувается порошок для опыления чувствительного слоя ксерографической пластинки, или путем использования трибоэлектричества, т. е. метода электризации одних частиц трением о поверхности других, более крупных частиц порошка-носителя (величиной до 300 л к). [c.301]

Вольрат (8531 предложил использовать генератор Ван дер Граафа в котором вместо электризации трением порошкообразный материал взвешен в воздушном потоке, и оценил потенциал в 260 кв. [c.434]

Электризация трением диэлектрических поверхностей вызывается образующимся при трении зарядом в результате соприкосновения с частичками при полете, трения различных материалов Друг о друга или отделения двух материалов один от другого. Появление статического заряда при пылеосаждении может быть и просто неприятным, и опасным. Топливные баки, вооружение и электрическое оборудование должны быть изолированы от воздействия статического электричества. Способы защиты изделий (аппаратов) от ударов молнии иногда могут преследовать две цели служить защитой и от молний, и от накопления статического Заряда. Их действие сводится к тому, чтобы обеспечить отвод Статического заряда до его накопления в количествах достаточно больших, чтобы вызвать воспламенение или взрыв или создать электромагнитные помехи на находящемся на борту электрическом оборудовании. [c.291]

Для тонной очистка диэлектрических жидкостей применяют злш рйческйе методы. Жйдкосэ ь пропускается в электрическом поле, создаваемом электродами, в результате чего сусиендиро-ванные в ней механические частицы , имеющие электрический заряд, притягиваются к противоположному по знаку заряда электроду. Частицы загрязнителя получают заряд статическим электричеством при их движении в диэлектрической жидкости в результате электризации трением или заряжаются искусственными способами. [c.567]

Сущность метода электрической сепарации заключается в электризации минеральных частиц и последующем их разделении в электрическом поле в соответствии с величиной и знаками их зарядов. Последние возникают при некоторых процессах (например, при контактном трении и нагреве разнородных частиц) вследствие различия в таких свойствах минералов, как электропроводность, электрическая проницаемость, электризация трением (трибоэлектрический эффект), пироэлектрический эффект и др. По правилу Коэна, вещества с большой диэлектрической константой (Na l — 6,0) заряжаются положительно, а с малой (КС1 4,8) — отрицательно. Более подробно теоретические основы этого метода рассмотрены в литературе [15-19]. [c.427]

Т рибоэлектреты получают контактной электризацией, трением двух диэлектриков. При тесном соприкосновении двух различных тел часть зарядов (электронов) одного из них, с меньшей работой выхода, переходит на другой. Трение также нарушает нейтра- [c.268]

Уменьшение трения в технических устро11ствах достигается также путем замены трения скольжения трением качения. Для этой цели широкое применение получили шариковые и роликовые подшипники. При одинаковых условиях силы трения качения значительно меньше сил трения скольжения. Трение качения наблюдается, например, когда цилиндр катится по плоскости без скольжения. При качении цилиндра вследствие движения участка контакта тел непрерывно идут два процесса деформирование новых и новых областей тел и спад или исчезновение деформаций в областях, деформированных ранее. Эти и другие процессы (например, электризация тел) крайне осложняют явление трения качения, Действие сил трепия качения приводит к тому, что при качении возникает момент сил трения, противоположный моменту импульса цилиндра. В первом приближении для сил трения качения справедлива эмпирическая формула Кулона [c.155]

Ионизирующие излучения, проходя через газ, делают его электропроводным. На этом свойстве основана работа нейтрализаторов статического электричества. Эти нейтрализаторы позволили решить давние наболевшие проблемы текстильной промышленности, связанные с электризацией нитей трением. Электризация нередко приводила к самовозгоранию. Особенно сильно электризуются многие синтетические волокна. Наэлектризованные нити плохо скручиваются, прилипают к разным частям машин. Никакими доядер-ными средствами решить эту задачу не удавалось. Установка же нейтрализаторов, главной частью которых является а-активный плутоний 94Ри , либо р-активные тритий или прометий (Ti/j = 2,6 лет), позволила обеспечить непрерывную разрядку статических зарядов через ионизированный воздух без изменения технологии процессов. Применение нейтрализаторов не только устранило пожарную опасность, но и привело к заметному увеличению производительности различных машин (ткацких, чесальных и др.) в текстильном производстве на 3—30%. В настоящее время нейтрализаторы статического электричества составляют 13% всех поставок радиационной техники. Они широко используются в текстильной, полиграфической и других отраслях промышленности. [c.682]

Такой вид трения называется избирательным переносом и используется там, где граничное трение недостаточно надежно или не обеспечивает долговечность машины [12]. Режим ИП характеризуется сложностью физико-химических процессов, что связано не только с многообразием внешних условий трения, но и с большим числом факторов, влияющих на ход этих процессов. К числу таких факторов, возбуждающих более сложные физикохимические явления на контакте при деформации и перемещении, следует отнести термодинамическую нестабильность смазки и металла давление и нагрев скорость перемещения, приводящую к столкновениям частиц на поверхностях трения каталитическое действие окисных пленок и самого металла на смазку трибоде-струкцию — разрыв молекул как гомеополярный, так и гетеро-полярный электризацию, способствующую притяжению частиц с разными зарядами и создающую двойной электрический слой образование различного рода дефектов в структуре металла де-поляризационный эффект трения в результате скольжения одной поверхности по другой, приводящий к снижению самопассивации вплоть до разрушения окисных пленок и ускорению коррозионных процессов эффект экзоэмиссии электронов, особенно при возвратно-поступательном движении. [c.5]

Электризация частиц обусловлена различными причинами сорбцией ионов из воздуха, трением частиц о предметы, фотоэффектом, термоэлектронной эмиссией и др. Заряд зависит от скорости потока воздуха (рис. 24, в) и от состава газа. Как видно из рис. 24, в, даже при сравнительно небольших скоростях воздуха — до 0,5 м/с заряд пылевых частиц может достигать нескольких сотен вольт. Полярность пылевых частиц может быть как положительной, так и отрицательной. Притяжение заряженных частиц к предметам обусловлено либо индуцированными силами зеркального отображения , либо зарядами, уже существующими на поверхностях предметов. Термин пылеотталкивающие материалы , в качестве которых применяются пленки, краски, покрытия, означает лишь минимальные пылеудерживающие свойства, т. е. материалы, плохо сорбирующие пары воды и разряжающие пылевые частицы при столкновении. [c.96]

Анализ литературных данных Б. В. Дерягина, Н. А. Кротовой и В. П. Смигла свидетельствует о преобладаюш,ей роли в адгезионном взаимодействии при трении диэлектрических материалов контактной электризации и электрического притяжения двойного электрического поля, возникаюш,его на границе двух фаз. [c.395]

В случае металлополимерной системы, работающей в условиях граничной смазки, механизм смазочного действия изучен недостаточно. В частности, некоторые авторы полагают, что на поверхности не образуется сплошная смазочная пленка, и поэтому действие смазочного материала малоэффективно. Однако другими работами показано, что на поверлности полиамидов и ряда других полимеров (фторопласт, полиэтилен) такая пленка удерживается из-за электризации поверхностей при трении [25]. Смазочная среда не только адсорбируется на поверхности полимера, но в некоторых случаях ее молекулы проникают в аморфные зоны материала и ослабляют межмолекулярные связи, приводя к пластификации поверхностного слоя. В последнем случае коэффициент трения может повышаться до значений, превышающих наблюдаемые при трении без смазочного материала. [c.56]

Вторая группа включает пневмоэлектростатическое распыление, напыление в ионизированном кипящем слое комбинкрованное электростатическое распыление и электризацию частиц краски (частицы порошковой краски приобретают заряд за счет трения воздушно-порошковой смеси о внутренние стенки шлангов, по которым она транспортируется к распылителям). [c.90]

В тех случаях, когда относительная скорость движения звуконосителя и головки велика, применение обычных головок нежелательно из-за повышенного износа головок и звуконосителя, сильного нагрева головок и электризации звуконосителя. Удаление головки от звуконосителя вызывает контактные потери, резко уменьшая воспроизводимый сигнал и ухудшая частотную характеристику в области высоких частот. Точная жесткая установка головок на небольшом расстоянии от звуконосителя (единицы микрон) требует прецезионной точности изготовления деталей и удорожает конструкцию. Выход состоит в применении плавающих головок. Блок головки делают такой формы, чтобы при обдуве его воздухом, увлеченным вязким трением за диском или барабаном звуконосителя, создавалась аэродинамическая подъемная сила, поднимающая блок над звуконосителем. Этому препятствует пружина, стремящаяся прижать блок к звуконосителю. Упругость пружины поддерживает расстояние между звуконосителем и головками порядка нескольких микрон или десятков микрон. В тех случаях, когда скорость звуконосителя невелика, но контакт головки со звуконосителем недопустим, применяют поддув воздуха и блок головок висит над звуконосителем благодаря воздушной подушке. [c.269]

А. С. Ахматова [1]. Многие закономерности граничного трения вы-сокополимеров изложены в монографиях [3, 4], [31]. При наличии высокомолекулярного материала в паре трения на первый план выступают такие явления, как статическая электризация, механодеструкция и сопровождающие ее окислительные процессы и ряд других. [c.24]

Смотреть страницы где упоминается термин Электризация трением: [c.352]    [c.195]    [c.868]    [c.95]    [c.73]    [c.52]    [c.164]    [c.519]    [c.16]    [c.201]    [c.202]    [c.43]    [c.241]    Адгезия пыли и порошков 1967 (1967) — [ c.284 ]

Определение

Электризацией называется процесс разделения электрических зарядов и накопление их в определенных местах предметов и тел. Явление происходит в результате трения, соприкосновения тел или в результате электростатической индукции. Простыми словами, когда рядом расположен какой-то предмет, обладающий электрическим полем.

Напомним: в физике выделяют два рода зарядов – положительные и отрицательные, или протоны и электроны. Между ними возникает электрическое поле. Одноименные заряды притягиваются, а разноименные отталкиваются.

Явление наблюдается на источниках питания и не только. На диэлектриках накапливаются заряды, все видели это в опытах, иллюстрирующих явление с эбонитовыми и стеклянными палочками, которые демонстрировали на уроках физики в школе.

Изначально все атомы, из них состоит всё что нас окружает, электрически нейтральны. В результате явления электризации на поверхности предметов появляются положительные или отрицательные заряды. Напомним школьный опыт: если потереть эбонитовую палочку шерстяной тканью, после прекращения трения палочка останется заряженной. Тогда говорят, что тело электризовано.

Таким образом, во время трения электроны переходили с одного предмета на другой. В результате, после прекращения трения избыточные электроны остались «не на своих» телах и получился избыточный заряд, и оно перестало быть нейтральным. В результате трения палочки о шерсть или мех на её поверхности образовался отрицательный заряд.

Лимонная батарейка

Электризация трением и электризация через влияние не являются единственными способами заряжения тел. Познакомимся с получением зарядов с помощью гальванического элемента. Об электричестве люди знали уже давно, но добывать его в гигантских масштабах научились только 100 лет назад. Его добывали из тепла, силы воды, внутренней энергии атома, силы ветра.

Первый химический источник электрического тока был изобретен случайно, в конце 17 века итальянским ученым Луиджи Гальвани, который исследовал реакцию подопытных животных на разные внешние воздействия. Явление возникновения и протекания тока было обнаружено при присоединении полосок из двух разных металлов к мышце лягушачьей лапки.

Опыты Гальвани стали основой исследований другого итальянского ученого – Алессандро Вольта. 200 лет назад он сформулировал главную идею изобретения. Причиной возникновения электрического тока является химическая реакция, в которой принимают участие пластинки металлов. Вольта создал нехитрое устройство из двух пластин металла (цинк и медь) и кожаной прокладки между ними, пропитанной лимонным соком. Алессандро Вольта выявил, что между пластинами возникает напряжение. Именем этого ученого назвали единицу измерения напряжения, а его фруктовый источник энергии стал прародителем всех нынешних батареек, которые в честь ЛуиджиГальвани называют теперь гальваническими элементами.

Двойкам нет

Электростатика — это раздел физики, где изучаются свойства и взаимодействия неподвижных относительно инерциальной системы отсчета электрически заряженных тел или частиц, которые имеют электрический заряд.

Электрический заряд — это физическая величина, характеризующая свойство тел или частиц входить в электромагнитные взаимодействия и определяющая значения сил и энергий при этих взаимодействиях. В Международной системе единиц единицей измерения электрического заряда является кулон (Кл).

Различают два вида электрических зарядов:

  • положительные;
  • отрицательные.

Тело является электрически нейтральным, если суммарный заряд отрицательно заряженных частиц, входящих в состав тела, равен суммарному заряду положительно заряженных частиц.

Стабильными носителями электрических зарядов являются элементарные частицы и античастицы.

Носители положительного заряда — протон и позитрон, а отрицательного — электрон и антипротон.

Полный электрический заряд системы равен алгебраической сумме зарядов тел, входящих в систему, т. е.:

Закон сохранения заряда: в замкнутой, электрически изолированной, системе полный электрический заряд остается неизменным, какие бы процессы ни происходили внутри системы.

Изолированная система — это система, в которую из внешней среды через ее границы не проникают электрически заряженные частицы либо какие-нибудь тела.

Закон сохранения заряда — это следствие сохранения числа частиц, совершается перераспределение частиц в пространстве.

Проводники — это тела, имеющие электрические заряды, которые могут свободно перемещаться на значительные расстояния. Примеры проводников: металлы в твердом и жидком состояниях, ионизированные газы, растворы электролитов.

Диэлектрики — это тела, имеющие заряды, которые не могут перемещаться от одной части тела к другой, т. е. связанные заряды. Примеры диэлектриков: кварц, янтарь, эбонит, газы в нормальных условиях.

Электризация — это такой процесс, вследствии которого тела приобретают способность принимать участие в электромагнитном взаимодействии, т. е. приобретают электрический заряд.

Электризация тел — это такой процесс перераспределения электрических зарядов, находящихся в телах, в результате которого заряды тел становятся противоположных знаков.

Виды электризации:

  • Электризация за счет электропроводности. Когда два металлических тела соприкасаются, одно заряженное и другое нейтральное, то происходит переход некоторого числа свободных электронов с заряженного тела на нейтральное, если заряд тела был отрицательным, и наоборот, если заряд тела положителен.
    В итоге этого в первом случае, нейтральное тело получит отрицательный заряд, во втором — положительный.
  • Электризация трением. В результате соприкосновения при трении некоторых нейтральных тел электроны передаются от одного тела к другому. Электризация трением есть причина возникновения статического электричества, разряды которого можно заметить, например, если расчесывать волосы пластмассовой расческой или снимая с себя синтетические рубашку или свитер.
  • Электризация через влияние возникает, если заряженное тело поднести к концу нейтрального металлического стержня, при этом в нем случается нарушение равномерного распределения положительных и отрицательных зарядов. Их распределение происходит своеобразным образом: в одной части стержня возникает избыточный отрицательный заряд, а в другой — положительный. Такие заряды называются индуцированными, возникновение которых объясняется движением свободных электронов в металле под действием электрического поля поднесенного к нему заряженного тела.

Точечный заряд — это заряженное тело, размерами которого в данных условиях можно пренебречь.

Точечный заряд — это материальная точка, которая имеет электрический заряд. Заряженные тела взаимодействуют друг с другом следующим образом: разноименно заряженные притягиваются, одноименно заряженные отталкиваются.

Закон Кулона: сила взаимодействия двух точечных неподвижных зарядов q1 и q2 в вакууме прямо пропорциональна произведению величин зарядов и обратно пропорциональна квадрату расстояния между ними:

Главное свойство электрического поля — это то, что электрическое поле оказывает влияние на электрические заряды с некоторой силой. Электрическое поле является частным случаем электромагнитного поля.

Электростатическое поле — это электрическое поле неподвижных зарядов. Напряженность электрического поля — векторная величина, характеризующая электрическое поле в данной точке. Напряженность поля в данной точке определяется отношением силы, воздействующей на точечный заряд, помещенный в данную точку поля, к величине этого заряда:

Напряженность — это силовая характеристика электрического поля; она позволяет рассчитывать силу, действующую на этот заряд: F = qE.

В Международной системе единиц единицей измерения напряженности является вольт на метр Линии напряженности — это воображаемые линии, необходимые для использования графического изображения электрического поля. Линии напряженности проводят так, чтобы касательные к ним в каждой точке пространства совпадали по направлению с вектором напряженности поля в данной точке.

Принцип суперпозиции полей: напряженность поля от нескольких источников равна векторной сумме напряженностей полей каждого из них.

Электрический диполь — это совокупность двух равных по модулю разноименных точечных зарядов (+q и –q), располагающихся на некотором расстоянии друг от друга.

Дипольный (электрический) момент — это векторная физическая величина, являющаяся основной характеристикой диполя. В Международной системе единиц единицей измерения дипольного момента является кулон-метр (Кл/м).

Виды диэлектриков:

  • Полярные, в состав которых входят молекулы, у которых центры распределения положительных и отрицательных зарядов не совпадают (электрические диполи).
  • Неполярные, в молекулах и атомах которых центры распределения положительных и отрицательных зарядов совпадают.

Поляризация — это процесс, который происходит при помещении диэлектриков в электрическое поле.

Поляризация диэлектриков — это процесс смещения связанных положительных и отрицательных зарядов диэлектрика в противоположные стороны под действием внешнего электрического поля.

Диэлектрическая проницаемость — это физическая величина, которая характеризует электрические свойства диэлектрика и определяется отношением модуля напряженности электрического поля в вакууме к модулю напряженности этого поля внутри однородного диэлектрика.

Диэлектрическая проницаемость — величина безразмерная и выражается в безразмерных единицах.

Сегнетоэлектрики — это группа кристаллических диэлектриков, которые не имеют внешнего электрического поля и вместо него возникает спонтанная ориентация дипольных моментов частиц.

Пьезоэлектрический эффект — это эффект при механических деформациях некоторых кристаллов в определенных направлениях, где на их гранях возникают электрические разноименные заряды.

Потенциал электрического поля. Электроемкость

Потенциал электростатический — это физическая величина, характеризующая электростатическое поле в данной точке, она определяется отношением потенциальной энергии взаимодействия заряда с полем к значению заряда, помещенного в данную точку поля:

В Международной системе единиц единицей измерения является вольт (В). Потенциал поля точечного заряда определяется:

При условиях если q > 0, то k > 0; если q

Принцип суперпозиции полей для потенциала: если электростатическое поле создается несколькими источниками, то его потенциал в данной точке пространства определяется как алгебраическая сумма потенциалов:

Разность потенциалов между двумя точками электрического поля — это физическая величина, определяемая отношением работы электростатических сил по перемещению положительного заряда из начальной точки в конечную к этому заряду:

Эквипотенциальные поверхности — это геометрическая область точек электростатического поля, где значения потенциала одинаковы.

Электрическая емкость — это физическая величина, которая характеризует электрические свойства проводника, количественная мера его способности удерживать электрический заряд.

Электрическая емкость уединенного проводника определяется отношением заряда проводника к его потенциалу, при этом будем предполагать, что потенциал поля проводника принят равным нулю в бесконечноудаленной точке:

Закон Ома

Однородный участок цепи — это участок цепи, который не имеет источника тока. Напряжение на таком участке будет определяться разностью потенциалов на его концах, т. е.:

В 1826 г. немецкий ученый Г. Ом открыл закон, который определяет соотношение между силой тока в однородном участке цепи и напряжением на нем: сила тока в проводнике прямо пропорциональна напряжению на нем. , где G — коэффициент пропорциональности, который называется в этом законе электропроводностью или проводимостью проводника, которая определяется формулой.

Электропроводность проводника — это физическая величина, которая является обратной его сопротивлению.

В Международной системе единиц единицей измерения электропроводности является сименс (См).

Физический смысл сименса: 1 См — это проводимость проводника сопротивлением 1 Ом. Чтобы получить закон Ома для участка цепи, необходимо подставить в формулу, приведенную выше, вместо электропроводности сопротивление R, тогда:

Закон Ома для участка цепи: сила тока в участке цепи прямо пропорциональна напряжению на нем и обратно пропорциональна сопротивлению участка цепи.

Закон Ома для полной цепи: сила тока в неразветвленной замкнутой цепи, включающая источник тока, прямо пропорциональна электродвижущей силе этого источника и обратнопропорциональна сумме внешнего и внутреннего сопротивлений данной цепи:

Правила знаков:

  • Если при обходе цепи в выбранном направлении ток внутри источника идет в направлении обхода, то ЭДС этого источника считается положительной.
  • Если при обходе цепи в выбранном направлении ток внутри источника идет в противоположном направлении, то ЭДС этого источника считается отрицательной.

Электродвижущая сила (ЭДС) — это физическая величина, которая характеризует действие сторонних сил в источниках тока, это энергетическая характеристика источника тока. Для замкнутого контура ЭДС определяется как отношение работы сторонних сил по перемещению положительного заряда вдоль замкнутого контура к этому заряду:

В Международной системе единиц единицей измерения ЭДС является вольт. При разомкнутой цепи ЭДС источника тока равна электрическому напряжению на его зажимах.

Закон Джоуля—Ленца: количество теплоты, выделяемое проводником с током, определяется произведением квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику:

При перемещении электрическое поле заряда по участку цепи делает работу, которая определяется произведением заряда на напряжение на концах этого участка цепи:

Мощность постоянного тока — это физическая величина, которая характеризует скорость совершения полем работы по перемещению заряженных частиц по проводнику и определяется отношением работы тока за время к этому промежутку времени:

Правила Кирхгофа, которые применяются для расчета разветвленных цепей постоянного тока, суть которого заключается в отыскании по заданным сопротивлениям участков цепи и приложенным к ним ЭДС сил токов в каждом участке.

Первое правило — правило узлов: алгебраическая сумма токов, которые сходятся в узле, — это точка, в которой есть более двух возможных направлений тока,она равна нулю

Второе правило — правило контуров: в любом замкнутом контуре, в разветвленной электрической цепи алгебраическая сумма произведений сил токов на сопротивление соответствующих участков этого контура определяется алгебраической суммой приложенных в нем ЭДС:

Магнитное поле — это одна из форм проявления электромагнитного поля, специфика которой состоит в том, что это поле воздействует только на движущиеся частицы и тела, имеющие электрический заряд, а также на намагниченные тела независимо от состояния их движения.

Вектор магнитной индукции — это векторная величина, которая характеризует магнитное поле в любой точке пространства, определяющая отношение силы, действующей со стороны магнитного поля на элемент проводника с электрическим током, к произведению силы тока и длины элемента проводника, равная по модулю отношению магнитного потока сквозь поперечное сечение площади к площади этого поперечного сечения.

В Международной системе единиц единицей индукции является тесла (Тл).

Магнитная цепь — это совокупность тел или областей пространства, где сосредоточено магнитное поле.

Магнитный поток (поток магнитной индукции) — это физическая величина, которая определяется произведением модуля вектора магнитной индукции на площадь плоской поверхности и на косинус угла между векторами нормали к плоской поверхности / угол между вектором нормали и направлением вектора индукции.

В Международной системе единиц единицей магнитного потока является вебер (Вб). Теорема Остроградского—Гаусса для потока магнитной индукции: магнитный поток сквозь произвольную замкнутую поверхность равен нулю:

Закон Ома для замкнутой магнитной цепи:

Магнитная проницаемость — это физическая величина, которая характеризует магнитные особенности вещества, которая определяется отношением модуля вектора магнитной индукции в среде к модулю вектора индукции в той же точке пространства в вакууме:

Напряженность магнитного поля — это векторная величина, которая определяет и характеризует магнитное поле и равна:

Сила Ампера — это сила, которая действует со стороны магнитного поля на проводник с током. Элементарная сила Ампера определяется соотношением:

Закон Ампера: модуль силы, воздействующей на небольшой отрезок проводника, по которому течет ток, со стороны однородного магнитного поля с индукцией, составляющей с элементом угол

Принцип суперпозиции: когда в данной точке пространства многообразные источники формируют магнитные поля, индукции которых В1,В2, .., то результирующая индукция поля в этой точке равна:

Правило буравчика или правило правого винта: если направление поступательного движения острия буравчика при ввинчивании совпадает с направлением тока в пространстве, то направление вращательного движения буравчика в каждой точке совпадает с направлением вектора магнитной индукции.

Закон Био—Савара—Лапласа: определяет величину и направление вектора магнитной индукции в любой точке магнитного поля, создаваемого в вакууме элементом проводника определенной длины с током:

Движение заряженных частиц в электрическом и магнитном полях Сила Лоренца — это сила, влияющая на движущуюся частицу со стороны магнитного поля:

Правило левой руки:

  1. Необходимо располагать левую руку так, чтобы линии магнитной индукции входили в ладонь, а вытянутые четыре пальца были сонаправлены с током, тогда отогнутый на 90° большой палец укажет направление силы Ампера.
  2. Необходимо располагать левую руку так, чтобы линии магнитной индукции входили в ладонь, а четыре вытянутых пальца совпадали с направлением скорости частицы при положительном заряде частицы или были направлены в сторону, противоположную скорости частицы при отрицательном заряде частицы, тогда отогнутый на 90° большой палец покажет направление силы Лоренца, действующей на заряженную частицу.

Если происходит совместное действие на движущийся заряд электрического и магнитного полей, то результирующая сила будет определяться:

Масс-спектрографы и масс-спектрометры — это приборы, которые предназначены специально для точных измерений относительных атомных масс элементов.

Закон Фарадея. Правило Ленца

Электромагнитная индукция — это явление, которое состоит в том, что в проводящем контуре, находящемся в переменном магнитном поле, возникает ЭДС индукции.

Закон Фарадея: ЭДС электромагнитной индукции в контуре численно равна и противоположна по знаку скорости изменения магнитного потока Ф сквозь поверхность, ограниченную этим контуром:

Индукционный ток — это ток, который образуется, если заряды под действием сил Лоренца начинают перемещаться.

Правило Ленца: индукционный ток, появляющийся в замкнутом контуре, всегда имеет такое направление, что созданный им магнитный поток через площадь, ограниченную контуром, стремится компенсировать то изменение внешнего магнитного поля, которое вызвало этот ток.

Порядок использования правила Ленца для определения направления индукционного тока:

  1. Поставить направление линий вектора магнитной индукции внешнего поля:
  2. Зная направление линий вектора магнитной индукции, употребляя правило буравчика, найти направление индукционного тока.

Вихревое поле — это поле, в котором линии напряженности представляют собой замкнутые линии, причиной которых является порождение электрического поля магнитным. Работа вихревого электрического поля при перемещении единичного положительного заряда вдоль замкнутого неподвижного проводника численно равна ЭДС индукции в этом проводнике.

Токи Фуко — это большие индукционные токи, появляющиеся в массивных проводниках из-за того, что их сопротивление мало. Количество теплоты, которое выделяется в единицу времени вихревыми токами, прямо пропорционально квадрату частоты изменения магнитного поля.

Самоиндукция. Индуктивность

Самоиндукция — это явление, состоящее в том, что изменяющееся магнитное поле индуцирует ЭДС в том самом проводнике, по которому течет ток, образовывающий это поле.

Магнитный поток Ф контура с током I определяется: Ф = L, где L — это коэффициент самоиндукции (индуктивность тока).

Индуктивность — это физическая величина, которая является характеристикой ЭДС самоиндукции, появляющейся в контуре при изменении силы тока, определяется отношением магнитного потока через поверхность, ограниченную проводником, к силе постоянного тока в цепи:

В Международной системе единиц единицей измерения индуктивности является генри (Гн). ЭДС самоиндукции определяется:

Энергия магнитного поля определяется:

Объемная плотность энергии магнитного поля в изотропной и неферромагнитной среде определяется:

Три способа электризации тел

Электрически нейтральное тело можно наэлектризовать разными способами:

  • трением;
  • прикосновением;
  • наведением (электростатической индукцией).

Электризация трением

Электризация трением происходит, когда вы трёте один предмет о другой.


Проведите эксперимент. Возьмите небольшой лист бумаги и пластмассовую ручку. Потрите ручку о волосы, а потом прикоснитесь к бумаге. Вы наэлектризовали ручку трением о волосы.

Электризация прикосновением

При взаимодействии двух тел, одно из которых наэлектризовано, незаряженное тело получает электрический заряд, если к нему прикоснуться заряженным. Если поднести пластмассовую ручку, обладающую положительным зарядом, к нейтральному стержню электроскопа, то произойдёт перераспределение заряда. Электроны стержня будут притягиваться положительным зарядом ручки (перетекать на ручку). Соответственно, на стержне образуется недостаток электронов, то есть положительный заряд. Причём равный по величине заряду ручки.

Электризация наведением (электростатическая индукция)

Этот способ электризации означает, что вы подносите заряженный предмет к изолированному проводнику, но не прикасаетесь к нему. Тогда на проводнике появляются заряды, притом на той его части, которая ближе к предмету, эти заряды противоположного знака. А на дальнем конце образуется заряд того же знака, что и на заряженном предмете.

При удалении заряженного предмета заряды на проводнике пропадают. Но если до удаления предмета разделить проводник на две части, то заряды на них сохранятся.

Учет электризации

  1. Перевозка топлива.
  2. Электризация нитей на ткацкой фабрике.
  3. Электризация самолета во время полета.
  4. Электризация одежды.

Опорный конспект:

опорный конспект закон кулона

Ответы

Электризация тел. Два вида электрических зарядов. Взаимодействие электрических зарядов. Закон сохранения электрического заряда

5

(100%)

3

votes

В повседневной жизни

Вокруг нас постоянно происходит электризация тел. При трении некоторых предметов она становится настолько высокой, что к ним притягиваются даже габаритные тяжелые детали. В домашних условиях наблюдать процесс электризации можно следующим образом:

  • Одеваем домашние тапочки матерчатые, только не с резиновой подошвой. Натираем длительно ногами по ковру или деревянному полу. И если коснуться кончиком пальцев с напарником, то получите разряд. В темноте будет видно как он сверкает.
  • Часто незаземленные холодильники и стиральные машины тоже бились статическим электричеством. Это происходило по причине трения вращающихся частей.
  • Электризуются ладони после трения их о ту же шерсть или шелк. Одежда на человеке притягивает разного рода пушинки, ворсинки по причине электризации. Девочки убирают её спреями-антистатиками, чтобы юбка не липла к ногам во время ходьбы.

простые физические опытыТелевизоры по этой же причине притягивают пыль к экранам и корпусу. А воздушный шарик, натертый о волосы головы, можно надолго подвесить к потолку. Происходит притяжение заряженной поверхности к обоям или другому покрытию.

Примеры явления

Само явление электризации было открыто еще в Древней Греции, когда заметили, что при натирании янтаря шерстью он начинает притягивать пыль, нитки, ворс. Это вещество по-гречески называется «электрон», отсюда и получили название все связанные с электричеством явления.

Электризация тел - условия, способы и области применения

Положительно электризуется стекло при трении о шелк, отрицательно — эбонит при трении о шерсть. Все знают примеры электризации в быту, например, положительно заряжаются волосы, когда расчесываются пластиковой расческой, а сама расческа электризуется отрицательно. Заряжаются положительно стекло, бумага, шерсть, отрицательно — резина, силикон, пластик.

Статическое электричество дольше всего сохраняется на предметах, если воздух сухой. Влажный воздух проводит электричество, и предметы быстро перестают быть наэлектризованными. В присутствии комнатных растений, кипящего чайника, которые повышают влажность, статика на одежде и волосах появляется реже.

Силовые линии магнитного поля – свойства, характеристика и направление

Известный пример электролизации — молния. Это электрический разряд, проскакивающий между разноименно заряженными облаками или между облаком и землей. Заряженные грозовые тучи могут вызывать электризацию различных предметов на земле из-за перераспределения зарядов на них.

Свойства наэлектризованных тел

  • Притягивание (отталкивание) мелких предметов – признак наэлектризованности. Два тела, заряженных одноимённо, противодействуют (отталкиваются), а разнознаковые – притягиваются. На этом принципе основана работа электроскопа – прибора для измерения величины заряда (см. рис. 5).

ЭлектроскопРис. 5. Электроскоп

  • Избыток зарядовнарушает равновесие во взаимодействии элементарных частиц. Поэтому каждоезаряженное тело стремится избавиться от своего заряда. Часто такое избавлениесопровождается молниеносным разрядом.

Показательные опыты

Показать взаимодействие одинаково или противоположно заряженных тел можно при помощи обычного скотча. Для этого необходимо две полоски клейкой ленты по 12,5 см.

Чтобы продемонстрировать отталкивание, полоски приклеивают к столу так, чтобы кусочек длиной 2,5 см остался свободным. Эти свисающие концы закрепляют на двух карандашах. Если резко оторвать скотч от стола, не касаясь его руками, полоски наэлектризуются одинаково. Теперь их нужно развести на некоторое расстояние и постепенно сближать. На определенном расстоянии будет заметно отталкивание полосок.

Чтобы продемонстрировать притяжение разноименно заряженных тел, одну полоску скотча электризуют, как в предыдущем опыте, а затем кладут на стол липкой стороной вверх. Другую полоску, предварительно закрепленную на карандаше, кладут на первую, а затем отрывают. Тогда полоски будут заряжены противоположно. Как и в предыдущем опыте, на определенном расстоянии можно заметить притягивание полосок.

Молнии

Основная статья: Молния

В результате движения воздушных потоков, насыщенных водяными парами, образуются грозовые облака, являющиеся носителями статического электричества. Электрические разряды образуются между разноименными заряженными облаками или, чаще, между заряженным облаком и озоновым слоем земли, с последующим разрядом на землю. При достижении критической разности потенциалов происходит разряд молнии между облаками, на земле или в околокосмическом слое планеты. Для защиты от молний устанавливаются молниеотводы, проводящие разряд напрямую в землю.

Помимо молний, грозовые облака могут вызывать на изолированных металлических предметах опасные электрические потенциалы из-за электростатической индукции.

В 1872 году экспедицией под руководством географа Генри Ганнетта[en] была покорена 13-я по высоте гора штата Монтана (США)[en]. Ей дали название Электрический пик

, так как у первопроходцев-покорителей, находящихся на вершине, после грозы начали сыпаться искры из пальцев рук и волос на голове[3][4][5].

Передача (проведение) электричества

Все ли вещества могут одинаково передавать электрический заряд? Ответ можно получить с помощью двух электрометров, металлического стержня и эбонитовой палочки. Стержень и палочка крепятся к пластмассовой ручке.

  • а – сообщить первому электрометру заряд, коснувшись шарика каким-либо заряженным телом;
  • б – стержнем из металла соединить оба электрометра. Половина заряда с первого электрометра перейдет на второй;
  • в – соединить электрометры эбонитовой палочкой. Перехода заряда не наблюдается.

Вещества, способные проводить электрические заряды, как в случае под буквой б, называются проводниками (металлы, кислотные, щелочные и солевые растворы). Вещества, с помощью которых нельзя передать заряды, называются диэлектриками (изоляторами). Хорошие диэлектрики – это резина, стекло, эбонит, фарфор, пластмассы, воздух и др.

Меры безопасности

В бытовых условиях защититься от статики можно при помощи следующих мер:

  1. Увлажнять воздух и каждый день проветривать комнаты;
  2. Регулярно проводить влажную уборку, чтобы уменьшить количество пыли, и использовать специальные антистатические щетки;


Использование щетки позволяет снять скопившееся напряжение

  1. По возможности использовать мебель из материалов, снимающих статику: специальный линолеум, дерево;
  2. Не гладить животных при слишком сухом воздухе, расчесываться деревянными или металлическими щетками — пластик сильно электризуется;
  3. Использовать для одежды антистатические спреи, шерстяные вещи снимать медленно для уменьшения трения;
  4. На днище автомобиля необходимо наклеить антистатическую полосу для снижения образования статики.

На производстве снизить электростатическое напряжение можно, уменьшив скорость работы, используя специальные материалы и заземление. Также по ГОСТу энергия накопления заряда на поверхности предметов не должна превышать 40% от наименьшей энергии загорания.


На производстве должны быть приняты меры предосторожности

Статическое электричество многие считают неопасным, хоть и не особо приятным. Однако все зависит от силы заряда: в промышленности или при перевозке большого количества горючих жидкостей накопившийся разряд может быть очень сильным и привести к пожару.

Вам это будет интересно Все об скважности сигнала

Порядок действий

Суть эксперимента:

  • Верхний диск плотно прикладывают через ткань к нижнему.
  • Его проворачивают несколько раз и резко убирают вверх.
  • Если все сделано правильно, заряд равномерно перераспределится между диском и стержнем.
  • Кусочки бумаги налипнут на стержень.

Для того чтобы бумага упала, можно снять заряд просто прикоснувшись к металлической части диска рукой без перчатки.

Мы рассмотрели часто встречающиеся и наиболее простые способы электризации тел.

Источник: fb.ru

Польза и вред статического электричества – Все об электричестве

Статическое электричество можно наблюдать при контакте волос с пластмассовой расческой Электричество для большинства людей на нашей планете является неотъемлемой частью жизни.

Использование электричества в доме, на производстве, при учебе и т.д. настолько обширно, что многие уже не могут представить своей жизни без него.

Но существует не только привычное нам электричество в проводах, но и менее приятное статическое электричество.

Те, кто изучал в школе физику, без проблем вспомнит различные опыты со статическим электричеством. Рассмотрим явление статического электричества более подробно. Как уже было сказано, большинство из городских жителей встречают статическое напряжение практически каждый день.

Это может произойти в процессе надевания одежды или же в момент, когда вы решили приласкать любимую кошку или собаку.

Итак, что же такое статическое электричество? Это такое явление, при котором под действием различных причин происходит развитие дисбаланса внутри атома либо молекулы.

Сам дисбаланс происходит между двумя типами частиц:

Возникает статическое электричество в том случае, когда в атоме протоны и электроны находятся в разном количестве.

Статистическое исследование помогает понять, что практически всегда, когда происходит явление статического электричества, воздух должен быть сухим.

При контакте статического электричества с телом человека зачастую болевые ощущения отсутствуют

Также, этот момент доказывается тем, что при влажном воздухе статистическое напряжение не развивается, ведь вода является одним из универсальных проводников электричества.

Причины возникновения статистического электричества

Как и у любого явления, будь то природное или же техногенное, есть свои причины возникновения, а также многочисленные факторы, которые увеличивают шанс проявления того или иного явления, в том числе и статического напряжения.

Причины:

  1. Главной причиной статистического электричества давно считается трение двух различных поверхностей. Представительницы прекрасного пола часто встречаются с таким явлением, когда одежда с примесью синтетики трется о кожу.
  2. Перепады температуры, происходящие резко, то есть изменение за короткое время на большие температуры.
  3. Радиация. Высокие показатели радиации нарушают равновесие между количеством положительных и отрицательных частиц в атоме того или иного вещества, предмета и т.д.
  4. Целенаправленная провокация – метод индукции.

Электрическое поле возникает при наличии магнитного.

С каждым годом расширенность магнитного поля вокруг людей становится все более обширной, ведь люди окружают себя большим количеством различных электрических приборов, которые используются в быту, рабочем офисе, в гараже, на территории автомобиля, то есть практически везде, где живет человек.

Именно за счет большой распространенности магнитных полей и высокой вероятности возникновения статического электричества, человечество давно задалось вопросом, какое влияние может оказать такое электричество на человеческий организм и как можно использовать само электричество, чтобы получать пользу от подобного явления.

Вред статистического электричества для организма человека

Нельзя промолчать о том, что электричество полезно для жизнедеятельности человека, порой оно позволяет спасти человеку жизнь, например, использование тока при остановке сердца. Но, как правило, статическое электричество приводит к нарушениям работы организма.

Так как бытовое статическое электричество обладает незначительным зарядом, оно не способно принести серьезных проблем, как например заряд электричества из провода, но все же и такое явление способно принести неприятности, в особенности при длительном воздействии.

А именно:

  • Сон нарушается;
  • Проявляются нарушения в сосудистой системе за счет изменения тонуса сосудов;
  • Повышенная утомляемость даже при привычных нагрузках;
  • Проблемы с нервной системой;
  • Незначительное нарушение работы мышц, к примеру, это может быть мышечный тик.

Все это незначительные нарушения, но и они, продолжаясь длительный отрезок времени, приносят человеку неприятности.

При плохом сне у человека начинаются проблемы с психологической стороны, постоянная усталость и недосып могут привести к развитию депрессивных состояний и психозов.

Мышечный нервный тик способен нарушить интенсивность работы, а это значит, что в некоторых случаях работник вынужден обратиться к специалисту и на время покинуть рабочее место, оставшись на больничный до улучшения состояния.

Из-за подобных проявлений следует как можно лучше следить за тем, что вы носите, на каком белье спите.

Для сна и постельного белья лучше всего выбирать ткани из натуральных материалов. Помните, чем больше процент синтетических волокон, тем выше вероятность того, что на ваш организм во время сна будет воздействовать статическое электричество, провоцируя те или иные изменения в теле человека.

При редком контакте статического электричества с человеком серьезных проблем со здоровьем быть не должно

Таким образом, можно говорить о том, что длительное воздействие статического напряжения приводит к неприятным последствиям для живого существа. Кроме того, следует сказать о том, что для тела человека характерно накопление электрического заряда, ведь все наши внутренние жидкости являются первоклассными электролитами.

Как снять статическое электричество с человека

По причине вреда от статического электричества, есть большая необходимость в том, чтобы вовремя снять его воздействие на человеческое тело, особенно это актуально для детей, которые являются более чувствительными к электричеству, нежели взрослые.

Существуют различные способы убрать с себя заряд статического электричества, кроме того, этими же способами может проводиться защита:

  1. Увлажнение кожных покровов. Мы уже говорили о том, что при высокой влажности статического напряжения не образуется. Увлажнение можно проводить путем нанесения на кожу различных лосьонов. Лучше всего делать это перед тем как одеваетесь, а также увлажняйте кожу рук и открытых участков тела в течение всего дня.
  2. Правильная натуральная одежда. Чаще всего статика образуется при ношении одежды из синтетических волокон. Поэтому следует сменить такие вещи на одежду из натуральных тканей: хлопок, лен и др. Также, для защиты можно использовать специальные аэрозоли-антистатики, в настоящее время распространены порошки для стирки одежды, в состав которых входят специальные добавки для предотвращения образования электричества.
  3. Обувь. Правильная обувь не менее важна, чем одежда. Как известно, разряд с земли лучше проходит через резиновую подошву обуви, поэтому лучше всего приобретать обувь на подошве из кожи. Для того, чтобы избавиться от статики при работе с электроприборами и их комплектующими, на многих предприятиях сотрудникам выдают специальную обувь.

Как видно, при условии, что электричество опасно и способно принести вред, можно однозначно говорить о том, что людям необходима серьезная защита от статического напряжения, будь то работа на производстве и электричество от оборудования, статика автомобиля или от компьютера.

Неприятное статическое электричество и защита от него

Поговорим о том, как защитить себя при работе, в условиях дома или поездок на машине.

Что нужно знать:

  1. В первую очередь следует говорить про увлажнение воздуха. Есть условие: нельзя устанавливать приборы для увлажнения в непосредственной близости от электроприборов, ведь в этом случае приборы для увлажнения превращаются в причины замыкания, что несет еще большую опасность.
  2. Во время заправки автомобиля защита заключается в том, чтобы из салона машины никто не выходил и никто не садился в салон. Такое предостережение объясняется тем, что перемещения подобного рода становятся причиной возникновения напряжения. Если ток соприкоснется с горючей жидкостью это спровоцирует сильный взрыв;
  3. В быту так же можно использовать антистатики чтобы бороться с электрическим зарядом с половиков, ковров и пылесосов.

Не стоит покупать одежду из искусственных материалов, которая вызывает статическое электричество

Сейчас существуют средства, направленные на снятие статики с пластика, с обивки автомобильных сидений, с электроприборов, которые способны ударить статистическим током с высоким показателем вольт.

Использование статистического напряжения

Не смотря на то, что статическое электричество довольно опасно для человека, многие ученые не переставали искать способ измерить, сколько вольт статическое напряжение, определить способ собрать его в одном месте и использовать, чтобы получить возможность использовать статику в своих целях. Ученые уже давно определили, что от обычных эбонитовых стержней, производящих статическое электричество может быть пользы в различных сферах жизни и работы человека.

Источник: https://contur-sb.com/polza-i-vred-staticheskogo-elektrichestva/

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...