Что такое конденсатор и как он работает?

Общее определение

Под ёмкостью обычно понимается такое понятие, как вместительность. Что это означает? В отношении любого сосуда вместительность подразумевает его способность к наполнению каким-либо веществом — и чем этот показатель выше, тем больше литров (или килограмм) можно поместить в объект.

В отношении электронных компонентов все аналогично: чем больше будет ёмкость конденсатора, тем большую величину заряда он может накопить и впоследствии отдать. И понятие электрической вместимости относится именно к этому типу радиотехнического оборудования.Электрическая ёмкость

Определение

Для проводников электрической ёмкостью называется величина, которая характеризует способность тела накапливать электрический заряд. Это и есть её физический смысл. Обозначается латинской буквой C. Она равна отношению заряда к потенциалу, если это записать в виде формулы, то получается следующее:

C=q/Ф

Электроемкость любого предмета зависит от его формы и геометрических размеров. Если рассмотреть проводник в форме шара, в качестве примера, то формула для расчета её величины будет иметь вид:

Электроемкость шара

Эта формула справедлива для уединенного проводника. Если расположить рядом два проводника и разделить их диэлектриком, тогда получится конденсатор. Об этом немного позже, сейчас давайте разберемся, в чем измеряется электроемкость.

Единица измерения электрической ёмкости — фарад. Если разложить её на составляющие согласно формуле то:

1 фарад =1 Кл/1 В

Исторически сложилось так, что размерность этой единицы выбрана не совсем верно. Дело в том, что на практике приходится работать с величинами электроемкости: мили-, микро-, нано- и пикофарад. Что равняется долям фарада, а именно:

1 мФ = 10^(-3) Ф

1 мкФ = 10^(-6) Ф

1 нФ = 10^(-9) Ф

1 пФ = 10^(-12) Ф

История накопителей заряда

Самое раннее письменное свидетельство получения зарядов с помощью трения принадлежит учёному Фалесу из Милета (635—543 гг. до н. э.), который описал трибоэлектрический эффект от взаимодействия янтаря и сухой шерсти. Для приблизительно 2300 последующих лет любое получение электричества заключалось в трении двух различных материалов друг о друга.

Качественный рывок в знаниях о зарядах произошёл в эпоху Просвещения — период революционного развития научной мысли в образованных кругах. В это время электричество становится популярной темой, а энтузиастами было произведено немало опытов и экспериментов с генераторами на основе трения.

Первое устройство для хранения полученных зарядов было создано в 1745 г. двумя электриками (так тогда называли людей, изучающих природу статического электричества), работающими независимо друг от друга: Эвальдом фон Клейстом, деканом собора в Пруссии, и Питером ван Мюссенбруком, профессором математики и физики в университете Лейдена.

Открытие явления произошло во время опытов у обоих экспериментаторов, но с той разницей, что Мюссенбрук, во-первых, сделал немало усовершенствований первоначально созданного оборудования, а во-вторых, письменно сообщил коллегам о своих достижениях. Прошло совсем немного времени и учёные мира стали создавать накопители зарядов собственных конструкций. Это были первые шаги в эволюции конденсаторов, продолжающейся и в наши дни. Основные даты хронологии появления устройств для хранения зарядов:

  • 1746 г. — изобретение лейденской банки в результате экспериментов по доработке устройства Клейста;
  • 1750 г. — опыты Бенджамина Франклина с батареями конденсаторов;
  • 1837 г. — публикация Майклом Фарадеем теории диэлектрической поляризации — научной основы работы накопителей;
  • конец XIX в. — начало практического применения лейденских банок вместе с первыми устройствами постоянного тока;
  • начало XX в. — изобретение слюдяных и керамических конденсаторов.

Маркировка конденсаторов в зависимости от ёмкости

При приобретении элементов, соответствующих расчетным данным для той или иной цепи, пользователю нужно уметь расшифровывать обозначения на корпусах устройств, информирующие, сколько емкости они способны накопить. У различных производителей приняты разные системы маркировки радиодеталей.

Кодировка маленьких по размерам устройств

На корпусах советских радиодеталей было принято обозначать пикофарады целым числом (например, 25). Если на такой детали параметр указан числом, содержащим десятичную дробную часть, подразумеваются микрофарады. Сами буквенные обозначения (пФ, мкФ и им подобные) прописывать на корпусах было не принято.

Важно! Что касается российских изделий, нанофарады и микрофарады указываются традиционными сокращениями, в которых редуцируется буква Ф (получается «н» и «мк», соответственно). Емкость, исчисляющуюся в пикофарадах, указывают только числом, как и у советских деталей.

Когда латинская приставка, указывающая кратную единицу, находится перед числом, последнее нужно считать как сотые доли. К примеру, n45 означает 0,45 нанофарад. Когда приставка находится в середине числа, на ее месте полагается быть запятой: 4u3 – 4,3 микрофарад. Применяется и трехзначная пикофарадная кодировка: когда последняя из цифр не больше 6, чтобы получить емкостное значение, к первым двум цифрам нужно приписать число нулей, соответствующее этой цифре (340 – 34 пикофарада, 342 – 3400). Цифры 7, 8 и 9 соответствуют перемножениям двузначного числа на 0,001, 0,01 и 0,1, соответственно.

Используется также обозначение номиналов изделий цветными полосами. Указание емкостного параметра регламентируется стандартом EIA.

Кодировка больших по размерам устройств

У крупногабаритных компонентов, к примеру, электролитических из алюминия, данные о параметрах, включая емкостной показатель, указываются на поверхности корпуса. Обычно емкость таких деталей выражается в микрофарадах. Буквы M или MFD символизируют именно эту единицу. Трехзначная аббревиатура может указываться и строчными буквами – mfd.


Маркировка крупных деталей

Формулы

На рисунке 3 наглядно показано формулы для определения емкости, в т. ч. и для сферы.

Электроёмкость проводникаРис. 3. Электроёмкость проводника

По отношению к конденсатору, для  определения его емкости применяют формулу: C = q/U. То есть, эта величина прямо пропорциональна заряду одной из обкладок и обратно пропорциональна разнице потенциалов между обкладками (см. рис. 4).

Ёмкость конденсатораЁмкость конденсатора

О других способах определения ёмкости конденсатора читайте в нашей статье: https://www.asutpp.ru/kak-opredelit-emkost-kondensatora.html

Электрический конденсатор

Устройство, предназначенное для накопления электрических зарядов, называется электрическим конденсатором.

Модель простейшего конденсатора

Рисунок 1. Модель простейшего конденсатора

Конденсатор состоит из двух металлических пластин (обкладок), разделенных между собой слоем диэлектрика. Чтобы зарядить конденсатор, нужно его обкладки соединить с полюсами электрической машины. Разноименные заряды, скопившиеся на обкладках конденсатора, связаны между собой электрическим полем. Близко расположенные пластины конденсатора, влияя одна на другую, позволяют получить на обкладках большой электрический заряд при относительно невысокой разности потенциалов между обкладками. Электрическая емкость конденсатора есть отношение заряда конденсатора к разности потенциалов между его обкладками:

Как показывают измерения, емкость конденсатора увеличится, если увеличить поверхность обкладок или приблизить их одну к другой. На емкость конденсатора оказывает влияние также материал диэлектрика. Чем больше электрическая проницаемость диэлектрика, тем больше емкость конденсатора по сравнению с емкостью того же конденсатора, диэлектриком в котором служит пустота (воздух). Выбирая диэлектрик для конденсатора, нужно стремиться к тому, чтобы диэлектрик обладал большой электрической прочностью (хорошими изолирующими качествами). Плохой диэлектрик приводит к пробою его и разряду конденсатора. Несовершенный диэлектрик повлечет за собой утечку тока через него и постепенный разряд конденсатора.

Длинные линии передачи высокого напряжения можно рассматривать как своеобразные обкладки конденсатора. Емкость провода нужно рассматривать не только относительно другого провода, но также относительно земли, стен помещений и окружающих предметов. Значительной емкостью обладают подводные и подземные кабели ввиду близкого расположения токоведущих жил между собой.

Конденсатор постоянной емкости

Конденсаторы, емкость которых изменять нельзя, называются конденсаторами постоянной емкости.

Схема устройства конденсатора постоянной емкости

Рисунок 2. Схема устройства конденсатора
постоянной емкости

Наиболее распространенные в настоящее время конденсаторы постоянной емкости состоят из очень тонких металлических (станиолевых) листов с парафинированной бумажной или слюдяной прослойкой между ними.

Для увеличения емкости (увеличения площади пластин конденсатора) чаще всего берут по нескольку станиолевых листов и соединяют их в две группы, входящие одна в другую и разделенные диэлектриком, как схематически показано на рисунке 2. Иногда также берут две длинные станиолевые пластины, прокладывают между ними и снаружи парафинированную бумагу и затем свертывают все в компактный пакет или трубку. Конденсаторы большой емкости во многих случаях помещают в металлическую коробку и заливают парафином.

Внешний вид современных конденсаторов постоянной емкости

Рисунок 3. Внешний вид современных конденсаторов постоянной емкости

Определим емкость плоского конденсатора. Возьмем произвольную замкнутую поверхность вокруг одной из пластин конденсатора. Тогда по теореме Гаусса поток вектора напряженности, проходящий через любую замкнутую поверхность, внутри которой находится электрический заряд, равен:

(1)

Предполагая, что поле конденсатора однородно (пренебрегая искажением поля у краев пластин), получаем напряженность электрического поля в конденсаторе:

(2)

где d – расстояние между пластинами или толщина диэлектрика. Подставив значение E из формулы (2) в формулу (1), получим:

откуда

Так как

то выражение емкости плоского конденсатора примет вид:

где S – площадь пластин в м²; d – толщина диэлектрика в м; ε – относительная электрическая проницаемость диэлектрика (диэлектрическая проницаемость).

Таким образом, для увеличения емкости плоского конденсатора нужно увеличить площадь его пластин (обкладок) S, уменьшить расстояние между ними d и в качестве диэлектрика поставить материал с большой относительной электрической проницаемостью (ε).

Видео об устройстве конденсатора постоянной емкости:

Пленочные конденсаторы

В данном виде конденсатора диэлектриком является пленка из пластика, например, полиэстер (KT, MKT, MFT), полипропилен (KP, MKP, MFP) или поликарбонат (KC, MKC).

пленочный вид конденсатора

Электроды могут быть напыленными на эту пленку (MKT, MKP, MKC) или изготовлены в виде отдельной металлической фольги, сматывающейся в рулон или спрессованной вместе с пленкой диэлектрика (KT, KP, KC). Современным материалом для пленки конденсаторов является полифениленсульфид (PPS).

Общие свойства пленочных конденсаторов (для всех видов диэлектриков):

  • работают исправно при большом токе;
  • имеют высокую прочность на растяжение;
  • имеют относительно небольшую емкость;
  • минимальный ток утечки;
  • используется в резонансных цепях и в RC-снабберах.

Отдельные виды пленки отличаются:

  • температурными свойствами (в том числе со знаком температурного коэффициента емкости, который является отрицательным для полипропилена и полистирола, и положительным для полиэстера и поликарбоната)
  • максимальной рабочей температурой (от 125 °C, для полиэстера и поликарбоната, до 100 °C для полипропилена и 70 °С для полистирола)
  • устойчивостью к электрическому пробою, и следовательно максимальным напряжением, которое можно приложить к определенной толщине пленки без пробоя.

Конденсаторы керамические

Этот вид конденсаторов изготавливают в виде одной пластины или пачки пластин из специального керамического материала. Металлические электроды напыляют на пластины и соединяют с выводами конденсатора. Используемые керамические материалы могут иметь очень разные свойства.

Разнообразие включает в себя, прежде всего, широкий диапазон значений относительной электрической проницаемости (до десятков тысяч) и такая величина имеется только у керамических материалов.

Столь высокое значение проницаемости позволяет производить керамические конденсаторы (многослойные) небольших размеров, емкость которых может конкурировать с емкостью электролитических конденсаторов, и при этом работающих с любой поляризацией и характеризующихся меньшими утечками.

Керамические материалы характеризуются сложной и нелинейной зависимостью параметров от температуры, частоты, напряжения. В виду малого размера корпуса — данный вид конденсаторов имеет особую маркировку.

Фарады через основные единицы системы СИ

Чтобы выразить рассматриваемую единицу через другие, можно отталкиваться от формулы емкости:

С = q/U, где q – заряд (принято вычислять его в кулонах), а U – потенциальная разность пластин (измеряют в вольтах).

Выходит, что Ф=Кл/В. Справедливо также следующее выражение:

Ф= (с4*А2)/(кг*м2).

Здесь подразумеваются слева направо: секунда, ампер, килограмм и квадратный метр.

Характеристики ёмкости

Этим значением определяется максимальная величина электрической энергии, которую устройство способно накопить и сохранить. Единицы её измерения — Фарады. В схемотехнике распространены устройства, ёмкость которых исчисляется в микро и пикофарадах. Эта характеристика, по сути, способность конденсатора вместить в себе максимально возможное количество электронов — чем их больше, тем выше окажется его ёмкость.

Конденсатор переменной емкости

Конденсаторы, емкость которых можно менять, называются конденсаторами переменной емкости.

Наиболее простой конденсатор переменной емкости имеет несколько (реже один) медных или алюминиевых полудисков, соединенных между собой электрически и укрепленных неподвижно. Другой ряд таких же полудисков собран на общей оси. При повороте этой оси каждый из укрепленных на ней полудисков входит меду двумя неподвижными полудисками. Поворачивая ось и меняя таким образом взаимное расположение подвижных и неподвижных полудисков, мы можем менять емкость конденсатора. На рисунке 3 показана схема устройства и на рисунке 4 – общий вид воздушного конденсатора переменной емкости.

Схема устройства конденсатора переменной емкости

Рисунок 3. Схема устройства конденсатора переменной емкости

Общий вид конденсатора переменной емкости

Рисунок 4. Общий вид конденсатора переменной емкости

Видео об устройстве серийного конденсатора переменной емкости:

Видео о том, как можно сделать самодельный конденсатор переменной емкости своими руками:

Видео о том, как можно сделать самодельный конденсатор переменной емкости своими руками:

Рабочее напряжение

Под этим определением скрывается функциональные возможности используемого в конструкции конденсаторного оборудования диэлектрика при определённом диапазоне напряжений. Даже при незначительном превышении номинала возникает высокий риск пробоя диэлектрической прокладки, что приводит к выходу из строя конденсатора. Значению нормального напряжения устройства необходимо уделять особое внимание, так как это этого напрямую зависит его функциональность и работоспособность электрической схемы в целом.

Что такое емкость

Данная величина характеризует способность конденсаторного устройства накапливать электрический заряд. Выразить ее можно как частное накопленного радиодеталью заряда и разницы потенциалов между пластинами.

Важно! Понятие электрической емкости применяют не только к конденсаторам, но и кабелям и другим проводниковым элементам. В этом случае она зависит от габаритов и пространственно-конфигурационных характеристик проводника, а также условий внешней среды.

Аккумуляторы и электроемкость

Основными характеристиками аккумуляторных батарей является:

  • Номинальное напряжение.
  • Емкость.
  • Максимальный ток разряда.

В данном случае для определения количественной характеристики времени работы или, говоря простым языком, чтобы рассчитать, на какое время работы прибора хватит аккумулятора, используют величину ёмкости.

В аккумуляторных батареях для описания электрической ёмкости используют следующие размерности:

  • А*ч — ампер-часы для больших аккумуляторов, например автомобильных.
  • мА*ч — милиампер-часы, для аккумуляторов для носимых устройств, например смартфонов, квадрокопетров и электронных сигарет.
  • Вт*часы — ватт-часы.

Эти характеристики позволяют определить, сколько времени работы выдержит аккумулятор при конкретной нагрузке. Для определения электрическую емкость аккумулятора измеряют в кулонах (Кл). В свою очередь кулон равен количеству электричества, переданному аккумулятору при силе тока 1А за 1с. Тогда если перевести в часы, то при токе в 1А за 1 час передается 3600 Кл.

Одним из способов измерения емкости аккумулятора является его разряд заведомо известным током, при этом вы должны замерить время разряда. Допустим, если аккумулятор разрядился до минимального уровня напряжения за 10 часов током в 5А – значит его емкость 50 А*ч

Электроемкость – это важная величина в электронике и электротехнике. На практике конденсаторы применяются практически в каждой схеме электронного устройства. Например, в блоках питания – для сглаживания пульсаций, уменьшения влияния высоковольтных всплесков на силовые ключи. Во времязадающих цепях различных схем, а также в ШИМ-контроллерах для того, чтобы задать рабочую частоту. Аккумуляторы также применяются повсеместно. Вообще задачи накапливания энергии и сдвига фаз встречаются очень часто.

Более подробно изучить вопрос поможет предоставленное видео:

Кратко объяснение изложено в этом видео уроке:

Теперь вы знаете, что такое электрическая емкость, в каких единицах происходит ее измерение и от чего зависит данная величина. Надеемся, предоставленная информация была для вас полезной и понятной!

Материалы по теме:

  • Как определить емкость конденсатора
  • Что такое электрический заряд
  • Закон Кулона простыми словами

Нравится

0)Не нравится

0)

Практические измерения

Значение ёмкости конденсатора обозначается на корпусе в дробных фарадах или с помощью цветового кода. Но со временем компоненты способны потерять свои качества, поэтому для некоторых критических случаев последствия могут быть неприемлемыми. Существуют и другие обстоятельства, требующие измерений. Например, необходимость знать общую ёмкость цепи или части электрооборудования. Приборов, осуществляющих непосредственное считывание ёмкости, не существует, но значение может быть вычислено вручную или интегрированными в измерительные устройства процессорами.

Для обнаружения фактической ёмкости нередко используют осциллограф как средство измерения постоянной времени (т). Эта величина обозначает время в секундах, за которое конденсатор заряжается на 63%, и равна произведению сопротивления цепи в омах на ёмкость цепи в фарадах: т=RC. Осциллограф позволяет легко определить постоянную времени и даёт возможность с помощью расчётов найти искомую ёмкость.

Существует также немало моделей любительского и профессионального электронного измерительного оборудования, оснащённого функциями для тестирования конденсаторов. Многие цифровые мультиметры обладают возможностью определять ёмкость. Эти устройства способны контролируемо заряжать и разряжать конденсатор известным током и, анализируя нарастание результирующего напряжения, выдавать довольно точный результат. Единственный недостаток большинства таких приборов — сравнительно узкий диапазон измеряемых величин.

Вам это будет интересно Устройство термопары, ее виды и принцип работы

Более сложные и специализированные инструменты — мостовые измерители, испытывающие конденсаторы в мостовой схеме. Этот метод косвенного измерения обеспечивает высокую точность. Современные устройства такого типа оснащены цифровыми дисплеями и возможностью автоматизированного использования в производственной среде, они могут быть сопряжены с компьютерами и экспортировать показания для внешнего контроля.

Немного о единице измерения

Как уже было сказано выше, ёмкость конденсаторов принято измерять в Фарадах. Общепринятая единица измерения пришла к нам из кулоновской физики, и напрямую связана с потенциалом проводников. Согласно основным законам электротехники, ёмкость в 1 Фарад характерна для элемента с зарядом в 1 Кулон, при этом разница потенциалов на обкладках должна составлять 1 Вольт. На ёмкостные свойства оборудования оказывает непосредственное влияние общее число электронов, которые оно способно накопить при нормальной работе.обозначения номинального напряжения

Порядок включение устройств в схему

При использовании неполяризованных конденсаторов важно только соблюдение их номинала — порядок их установки относительно полюсов значения не имеет.

К поляризованным конденсаторам применяются следующие правила включения в схему:

  1. Параллельное соединение. Выполняется «плюс к плюсу». При таком способе подключения итоговая ёмкость группы будет равняться сумме ёмкостей всех находящихся в батарее элементов.
  2. Последовательное соединение. Такой способ соединения позволяет многократно повысить рабочее напряжение группы. Однако стоит учитывать, что номинальная ёмкость в итоге окажется меньше самого слабого элемента. Для её расчёта следует воспользоваться специальной формулой.Последовательное соединение

Наибольшее распространение в электротехнике получили электролитические конденсаторы — электролиты. Они успешно используются для производства комплектующих, аудио и видеотехники, прочих цифровых устройств.

Прочие способы измерения

Максимальной точности данных можно достигнуть при применении индикатора иммитанса. Проблема в том, что такие устройства требуют больших бюджетных вложений, зачастую имея цену более 100 тысяч рублей.

Еще один способ – собрать цепь из резистора и конденсатора. Предварительно у первого замеряют сопротивление, а также измеряют напряжение источника питания. Собрав цепь, емкостной элемент закорачивают, подключают цепь к питанию, замеряют напряжение и умножают на 0,95. После раскорачивания замеряют время, за которое напряжение упадет от 100 до 95%. Эту цифру надо поделить на утроенное резисторное сопротивление. Это и будет емкостной показатель в фарадах.

Единицу фарад используют для описания емкостных показателей, как конденсаторных устройств, так и проводников. Для правильного подбора деталей необходимо уметь расшифровывать маркировку на корпусе.

Конструкция и принцип работы

Простейшим конденсатором являются две металлические пластины, разделённые диэлектриком. Выступать в качестве диэлектрика может воздушное пространство между пластинами. Модель такого устройства изображена на рис. 2.


Рис. 2. Модель простейшего конденсаторного устройства

Если на конструкцию подать постоянное напряжение, то образуется кратковременная замкнутая электрическая цепь. На каждой металлической пластине сконцентрируются заряды, полярность которых будет соответствоать полярности приложенного тока. По мере накопления зарядов ток будет ослабевать, и в определенный момент цепь разорвётся. В нашем случае это произойдёт молниеносно.

При подключении нагрузки накопленная энергия устремится через нагрузочный элемент в обратном направлении. Произойдёт кратковременный всплеск электрического тока в образованной цепи. Количество накапливаемых зарядов (ёмкость, C) прямо зависит от размеров пластин.

Единицу измерения ёмкости принятоназывать фарадой (Ф). 1 F – очень большая величина, поэтому на практике часто применяют кратные величины: микрофарады (1 мкФ = 10-6 F), нанофарады ( 1 нФ = 10-9 F = 10-3 мкФ), пикофарады (1 пкФ = 10-12 F = 10-6 мкФ). Очень редко применяют величину милифараду (1 мФ = 10-3 Ф).

Конструкции современных конденсаторов отличаются от рассматриваемой нами модели. С целью увеличения ёмкости вместо пластин используют обкладки из алюминиевой, ниобиевой либо танталовой фольги, разделённой диэлектриками. Эти слоеные ленты туго сворачивают в цилиндр и помещают в цилиндрический корпус. Принцип работы не отличается от описанного выше.

Существуют также плоские конденсаторы, конструктивно состоящие из множества тонких обкладок, спрессованных между слоями диэлектрика в форме параллелепипеда. Такие модели можно представить себе в виде стопки пластин, образующих множество пар обкладок, соединённых параллельно.

В качестве диэлектриков применяют:

  • бумагу;
  • полипропилен;
  • тефлон;
  • стекло;
  • полистирол;
  • органические синтетические плёнки;
  • эмаль;
  • титанит бария;
  • керамику и различные оксидные материалы.

Отдельную группу составляют изделия, у которых одна обкладка выполнена из металла, а в качестве второй выступает электролит. Это класс электролитических конденсаторов (пример на рисунке 3 ниже). Они отличаются от других типов изделий большой удельной ёмкостью. Похожими свойствами обладают оксидно-полупроводниковые модели. Второй анод у них – это слой полупроводника, нанесённый на изолирующий оксидный слой.

Конструкция радиального электролитического конденсатора
Рис. 3. Конструкция радиального электролитического конденсатора

Электролитические модели, а также большинство оксидно-полупроводниковых конденсаторов имеют униполярную проводимость. Их эксплуатация допустима лишь при наличии положительного потенциала на аноде и при номинальных напряжениях. Поэтому следует строго соблюдать полярность подключения упомянутых радиоэлектронных элементов.

На корпусе такого прибора обязательно указывается полярность (светлая полоска со значками «–», см. рис. 4) или значок «+» со стороны положительного электрода на корпусах старых отечественных конденсаторов.

Обозначение полярности выводов
Рисунок 4. Обозначение полярности выводов

Срок службы электролитического конденсатора ограничен. Эти приборы очень чувствительны к высоким напряжениям. Поэтому при выборе радиоэлемента старайтесь, чтобы его рабочее напряжение было значительно выше номинального.

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...