Что такое гистерезис, какие польза и вред от данного явления

Температурный гистерезис — что это в MSI Afterburner?

190312150744.jpgПриветствую. MSI Afterburner — фирменный софт для разгона видеокарт NVIDIA/AMD. Позволяет регулировать напряжение питания GPU/видеопамяти, частоту видеоядра, количество оборотов вентилятора. Присутствует мониторинг текущих показателей.

Разгон предусматривает наличие некоторого опыта. Неопытном пользователям не советую увлекаться разгоном. Разгон это всегда работа в условиях, не предусмотренными производителем.

Оборудование, материаловедение, механика и …

Статьи Чертежи Таблицы О сайте Реклама

Измерение электрических параметров, которые характеризуют температурные зависимости термистора, трудно выполнить точно из-за сложной конструкции элемента, его формы, высокой чувствительности к окружающей температуре и влияния непосредственного нагрева измерительными токами. Такие параметры, как зависимость вольт-амперной характеристики от температуры, электросопротивление при постоянной температуре, наличие температурного гистерезиса, полупроводниковые свойства и изменения констант материалов, часто измеряли с целью выяснения ухудшения свойств, зависящих от внешних условий. При исследовании облученных термисторов в большинстве случаев обычно учитывали влияние излучения только на вольт-амперную характеристику. [c.359]

Хотя в каждом опыте установка в течение достаточно длительного времени выводилась на режим термического равновесия, все же наблюдался температурный гистерезис. Этот гистерезис составлял примерно при самых низких числах Рейнольдса п уменьшался до нуля при высоких числах Рейнольдса. В случае гистерезиса использовались средние значения измеряемых величин. [c.436]

Температурный гистерезис hm определяется как разность средних температур поверхности насадки за периоды нагрева и охлаждения. Его значение зависит от продолжительности дутья, коэффициента [c.287]

Температурный гистерезис регенератора 287 Тепловая нагрузка теплообменных аппаратов и отопительных систем 329, 331 [c.541]

Можно предполагать, что при первом эксперименте, кроме эффекта температурного гистерезиса (о котором подробнее будет сказано ниже), имел место процесс освобождения плиток от той молекулярной напряженности, которая создалась в плитках во время их изготовления, т. е. произошел процесс искусственного старения плиток. [c.207]

Таким образом, на долю температурного гистерезиса приходится то увеличение длины плиток, которое указано в табл. 3. Кроме того, из [c.207]

Таким образом, металлическое тело может иметь при одной и той же температуре различную длину в зависимости от предшествующих температурных состояний. Отсюда следует, что в металлических телах, принимающих различные стационарные температурные состояния замкнутым циклом, начиная от некоторой средней температуры, должно наблюдаться явление, которое при графической интерпретации напоминает магнитную гистерезисную петлю и которое по этой аналогии мы назвали температурным гистерезисом. [c.208]

Заметим, что различие между температурными коэффициентами удлинения для стальной меры и для эталона при обработке наблюдений не отражается на величине температурного гистерезиса полученного относительным методом. В этом легко убедиться, если привести значения [c.209]

А/ к одинаковой температуре, например 20° С, и сравнить величины температурного гистерезиса, полученные из приведенных и неприведенных значений. Величина гистерезиса в том и другом случае будет одной и той же. Петля гистерезиса, построенная по приведенным значениям А/, располагается горизонтально. [c.209]

На рис. 1 использованы значения А/, не приведенные к одинаковой температуре лишь с той целью, чтобы график температурного гистерезиса, построенный по этим данным, был по внешнему виду похож на график магнитного гистерезиса. Следует отметить, что указанный график, построенный по наблюдениям, отнесенным к эталону при температуре наблюдения, показывает не абсолютную, а относительную картину температурного гистерезиса. [c.209]

В связи с тем что наблюдения проводились относительным методом, полученная величина температурного гистерезиса представляет собой разность,между величиной гистерезиса для стальной меры и эталона. [c.209]

Несмотря на то что полученная относительным методом величина гистерезиса, очевидно, значительно меньше величины, которую мож -.. было бы пол-учить абсолютным методом, относительный метод в данном случае оказался более удобным, так как полученные с его помощью результаты подтверждают одновременно факт существования температурного гистерезиса в металлических телах и различие его величины д гл разных тел, чего нельзя было бы получить из одной серии наблюдений абсолютным методом. [c.209]

Величиной температурного гистерезиса условимся называть расстояние по вертикальной оси между кривыми, образующими петлю гистерезиса. [c.209]

Из этих графиков видно, что даже для таких высокостабильных материалов (платина—иридий), из которых приготовлены эталоны, имеет место температурный гистерезис. [c.210]

Интересно отметить, что температурный гистерезис имеет место не только для металлических тел. Аналогичные явления мы наблюдали на полимерах и керамических образцах. В качестве примера приведем график гистерезисной петли для относительного удлинения керамического образца (рис. 3). [c.210]

Этот температурный гистерезис, называемый интервалом возгонки, сдвигом или температурой скольжения объясняется тем, что вначале стремится к испарению более летучий компонент (например, в смеси эфира и воды эфир испаряется раньше, чем вода). Более интенсивное испарение самого летучего компонента изменяет характеристики остающейся смеси (она обогащается менее летучими компонентами), при этом одновременно меняется соотношение между температурой и давлением насыщенного пара. [c.334]

Однако при данном давлении из-за температурного гистерезиса таблицы (или линейна) дают две разных температуры точку росы 0р и температуру вскипания 0в. [c.336]

Величина температурного гистерезиса [c.300]

Таким образом, протекание обратного мартенситного превращения требует температурного гистерезиса, о чем мы указывали ранее, когда рассматривали результаты исследований свойств сплавов с ЭПФ. [c.303]

На рис. 1.4 показано [3] изменение электросопротивления при прямом мартенситном превращении и обратном превращении в сплавах Ре — 30 % (ат.) N1 и Аи — 47,5% (ат.) Сс1. Температурный гистерезис превращения в сплавах РеМ очень большой — 400°С. В сплавах же Аи—Сс) температурный гистерезис превращения очень мал 15°С. [c.14]

Рис. 1.4. Температурный гистерезис превращения при атермическом (Ре — N1) и термоупругом (Аи — Сс1) мартенситном превращении ( 3 ] Рис. 1.4. Температурный гистерезис превращения при атермическом (Ре — N1) и термоупругом (Аи — Сс1) мартенситном превращении ( 3 ]

В табл. 1.1 приведен состав сплавов, в которых происходит термоупругое мартенситное превращение и наблюдается эффект памяти фор>-мы. Здесь же указаны температура М , температурный гистерезис превращения, изменение кристаллической структуры, наличие или отсутствие упорядоченной структуры, объемные изменения. За некоторым исключением, указанные выше условия выполняются почти для всех сплавов. Сплавь , составляющие исключение, имеют неупорядоченную структуру, однако соответствие решеток при превращении у них, как показано ниже, такое же, как и в упорядоченных структурах. [c.16]

Из анализа зависимости электросопротивления от температуры ясно, что мартенситное превращение // /// при нагреве и охлаждении является классическим фазовым переходом первого рода, характеризующимся температурным гистерезисом. Превращение / // является почти обратимым и близко к фазовому переходу второго рода. С помощью рентгеновского дифракционного исследования при разных температурах обнаружено, что при понижении температуры пик (110) 2 расщепляется на два пика, причем пики фазы / и фазы II никогда не наблюдаются одновременно. Это показывает, что описываемое превращение отличается от обычного мартенситного превращения. [c.61]

При нагревании гомогенного сплава плавление начинается при истинной равновесной температуре без перегрева, аналогичного переохлаждению. Однако в случае превращений в твердом состоянии эффект температурного гистерезиса иногда очень значителен, так что кривые охлаждения и кривые нагрева дают температуры превращения, лежащие соответственно ниже и выше истинных равновесных значений. При превращении в твердом состоянии новая фаза обычно развивается и растет из зародышей в этих условиях должна произойти некоторая диффузия, чтобы группы атомов перестроились и образовали решетку, характерную для новой фазы. [c.121]

Во-первых, магнитные свойства постепенно падают по мере приближения к точке превращения, и эта точка не отвечает скачкообразному изменению свойств. Во-вторых, магнитное превращение не имеет температурного гистерезиса. Увеличение скорости охлалфизические свойства при превращении не изменяются (изменяются многие электрические магнитные и тепловые свойства). Наконец, в-четвертых, самое важное магнитное превращение не сопровождается перекристаллизацией— образованием новых зерен, и изменением решетки. [c.59]

I рода можно было бы, конечно, продолжить. Они существуют, например, и в жидкостях, где к таковым относится переход из -жидкой фазы в жидкокристаллическую. Характерные черты переходов II рода, наблюдающиеся во всех случаях, — непрерывность, -Я-образный характер температурных зависимостей вторых произ-гводных G, отсутствие температурных гистерезисов. Вследствие непрерывности этого перехода между симметрией более и менее симметричных фаз существует определенное соответствие пространственная группа одной из этих фаз должна быть подгруппой пространственной группы другой фазы (часть элементов симметрии исчезает при переходе в менее симметричную фазу). Доказана теорема о том, что фазовый переход II рода может существовать для всякого изменения структуры, связанного с уменьшением вдвое числа преобразований симметрии. При этом периоды элементарной ячейки могут меняться в несколько раз (2—4). [c.262]

С помощью параметров Л и П можно оценить численные значения двух основных температурных характеристик регенератору среднего температурного гистерезиса hm и относительных потерь от недо-рекуперации Двнед-  [c.287]

На рис. 3.51 представлена зависимость безразмерного среднего температурного гистерезиса (ДГ—от приведенных времени П и длины Л. Значение ЛГ равно [c.288]

В сплавах с большим температурным гистерезисом мартенситного превращения наблюдается лишь частичное восстановление формы. К таким сплавам можно отнести N6 — N1, Ге — Мн, нержавеющую сталь и др, В них уже небольшие противодействующие напряжения исключают восстановление формы. Это связано с тем, что, во-первых, мартенситные фазы в этих енлавах обладают высокой симметрией, что допускает протекание обратного превращения по путям, отличным от прямого превращения. Во-вторых, образование мартенсита даже в отсутствие напряжения в этих сплавах сопровождается необратимым процессом возникновения и перемещения полных дислокаций. [c.527]

Вблизи Т, наблюдается целый ряд аномалий физ. свойств ФМ значит, юст коэрцитивной силы, температурный гистерезис намагниченности, аномалии магнитострик-ции и магнитокалорич. эффекта (рис. 9) и увеличение размеров доменов, Константы Верде, Холла и др. подобные характеристики в Т, не обращаются в нуль, а обнаруживают достаточно сложную зависимость от темп-ры и поля. [c.288]

Рнс. 9. Аномалии физических свойств ферримагнетиков вблизи точки магнитной компенсации а—температурный гистерезис намагниченности ст, соелинения ЕгНе б—магнитокалорический эффект в феррите-гранате Od FjOij —продольная магнитострик-ция феррита-граната GdjFjOu- [c.288]

Проведя аналогичные построения графиков температурного гистерезиса для бронзовых, латунных и ин-варных образцов, мы заметили, что величина температурного гистерезиса различна для разных тел. [c.210]

В зависимости от используемого переходного хладагента (и его температурного гистерезиса) может потребоваться настройка перегрева, а иногда и смена сопла ТРВ (поставщик хладагента даст вам все нужные сведения). Наконец, если потребуется дозаправить установку, делать это нужно всегда только в жидкой фазе. [c.339]

С = (254-30) ГПа, коэффициент Пуассона д = 0,224-0,3 при обратном мартенситном превращении может быть реализована деформация до 8%, температурный гистерезис превращения АГ п = (154-50) °С никелид титана хорошо демпфирует колебания, логарифмический декремент колебаний Д= (14-2)10″ [c.290]

Оценим величину температурного гистерезиса АТ для никелида титана и бронзы Си—Zn—А1. При Го = 300 К, 5о = 48 Дж/моль К (для Т1№), 5о = 30 Дж/моль-К (для бронзы), А5стр == -6 Дж/моль-К (для Т1№), Д5стр = -1,7 Дж/моль-К (для бронзы) для никелида титана АТ > 37,5 °С, для бронзы АТ > 17 °С. Это хорошо согласуется с данными табл. 6.4. [c.303]

Вейман с сотрудниками предположили, что указанная фаза с несоразмерной структурой соответствует состоянию, когда сосуществуют волны зарядовой плотности трех типов, имеющие волновые числа 1/3 — НО , 1/3 111 и 1/3 12lj>. При превращении фазы с несоразмерной структурой в фазу с соразмерной структурой происходит расщепление рефлексов (111) и (110) вследствие тригональных искажений фазы В2 в направлениях (111). Эти тригональные искажения изменяются в зависимости от Т, однако при их возникновении и исчезновении имеется температурный гистерезис. Ясно, что рассматриваемое превращение является превращением первого рода. Рефлексы типа 1/3 при этом точно соответствуют положениям 1/3. При понижении Т появляется моноклинная мартенситная фаза. Полностью процесс превращения в этих сплавах описывается последовательностью исходная фаза->несоразмерная фаза (кубическая) -> соразмерная фаза (тригональная) -> мартенситная фаза (моноклинная). Температура начала превращения несоразмерной фазы в соразмерную М промежуточную фазу рассматривают, не разделяя на области несоразмерной и соразмерной фаз, а температуру превращения обозначают M g. Тем не менее поверхностный рельеф, обусловленный промежуточной фазой, возникает при более низкой Mg. [c.64]

Однако в отличие от биметаллического элемента, у которого отклонение изменяется прямопропорционально температуре, у сплава с эффектом памяти формы прогиб изменяется резко при характеристической температуре. Кроме того, у сплава с эффектом Памяти формы имеется температурный гистерезис, характеризуемый разностью прогибов при нагреве и при охлаждении, на что следует обращать особое внимание при практическом применении. [c.151]

Структурные превращения в металлах и сплавах сопровождаются выделением или поглощением скрытой теплоты превращения (например, при распл1авлении металлов поглощается скрытая теплота плавления) или же связаны с аномальной удельной теплоемкостью, которая наблюдается, например при образовании сверхструктуры в Р-латуни. Отсюда следует, что при нагревании или охлаждении металла или сплава в одинаковых условиях структурные изменения должны вызвать изменение хода кривой температура — время. По перегибу кривой можно найти температуру структурного превращения. В условиях истинного равновесия температура (или температурный интервал), при которой происходит данное структурное превращение, является постоянной дл я данного металла ил1и сплава, но практически часто наблюдается температурный гистерезис структурного превращения. Например, при медленном охлаждении в условиях истинного равновесия жидкое олово затвердевает при постоянной температуре 231,9 но в обычных опытах часто оказывается возможным, прежде чем начнется кристаллизация, охладить жидкое олово на 20 или 30° ниже его истинной температуры затвердевания. Это явление обычно называется переохлаждением. Переохлаждение является результатом кристаллизации, происходящей путем зарождения центров и их роста. [c.120]

Смотреть страницы где упоминается термин Температурный гистерезис: [c.98]    [c.452]    [c.527]    [c.205]    [c.212]    [c.335]    [c.94]    [c.95]    [c.146]    [c.220]    [c.208]    Физическое металловедение Вып II (1968) — [ c.451 ]

Гистерезис

Медведев. Температурный гистерезис

Превращение атермическое температурный гистерезис

Температурный гистерезис регенератора

Петля гистерезиса

явление гистерезиса

На графике зависимости М от Н можно видеть:

  1. Из нулевого состояния, при котором М=0 и Н=0, с увеличением Н растет и М.
  2. Когда поле увеличивается, то намагниченность становится практически постоянной и равна значению насыщения.
  3. При уменьшении Н происходит обратное изменение, но вот когда Н=0, намагниченность М не будет равна нулю. Это изменение можно видеть по кривой размагничивания. И когда Н=0, М принимает значение, равное остаточной намагниченности.
  4. При увеличении Н в интервале –Нт… +Нт происходит изменение намагниченности вдоль третьей кривой.
  5. Все три кривые, описывающие процессы, соединяются и образуют своеобразную петлю. Она-то и описывает явление гистерезиса – процессы намагничивания и размагничивания.

Вещества и их магнитные свойства

Образцы, изготовленные из разных материалов, особым образом реагируют на воздействие магнитного поля. Основные различия определяются магнитной проницаемостью (μ). Это коэффициент (множитель), показывающий разницу векторного значения индукции (B) в этом веществе, по сравнению с вакуумом (B0):

  • диамагнетики (μ≤1) – медь, вода, водород;
  • парамегнетики (μ≥1) – эбонит, кислород, платина;
  • ферромагнетики (μ значительно больше 1) – кобальт, никель, железо.

Магнитопровод

Последняя группа отличается магнетизмом, который сохраняется после удаления внешнего воздействия.

К сведению. При нагреве ферромагнетика на определенном уровне (точка Кюри) магнитные свойства пропадают. Для железа этот показатель составляет +770°C.

Намагниченность (М) можно определить, как разницу между индукциями (B-B0), либо выразить через проницаемость следующей формулой:

М = μ* B0 – B0 = (μ-1)*B0.

ГИСТЕРЕ́ЗИС

ГИСТЕРЕ́ЗИС (от греч. ὑστέρησις – от­ста­ва­ние, за­паз­ды­ва­ние), за­паз­ды­ва­ние из­ме­не­ния фи­зич. ве­ли­чи­ны, ха­рак­те­ри­зую­щей со­стоя­ние ве­ще­ст­ва, от из­ме­не­ния др. фи­зич. ве­ли­чи­ны, оп­ре­де­ляю­щей внеш­ние ус­ло­вия. Г. име­ет ме­сто в тех слу­ча­ях, ко­гда со­стоя­ние те­ла в дан­ный мо­мент вре­ме­ни оп­ре­де­ля­ет­ся внеш­ни­ми ус­ло­вия­ми не толь­ко в тот же, но и в пред­ше­ст­вую­щие мо­мен­ты вре­ме­ни. В ре­зуль­та­те для цик­лич. про­цес­са (рост и умень­ше­ние внеш­не­го воз­дей­ст­вия) по­лу­ча­ет­ся пет­ле­об­раз­ная (не­од­но­знач­ная) диа­грам­ма, ко­то­рая на­зы­ва­ет­ся пет­лёй ги­стере­зи­са. Воз­ни­ка­ет Г. в разл. ве­ще­ст­вах и при раз­ных фи­зич. про­цес­сах. Наи­боль­ший ин­те­рес пред­став­ля­ют маг­нит­ный, сег­не­то­элек­три­че­ский и уп­ру­гий гис­те­ре­зис.

Маг­нит­ный Г. – не­од­но­знач­ная за­ви­си­мость на­маг­ни­чен­но­сти $\boldsymbol M$ маг­ни­то­упо­ря­до­чен­но­го ве­ще­ст­ва (маг­не­ти­ка, напр., фер­ро- или фер­ри­маг­не­ти­ка) от внеш­не­го маг­нит­но­го по­ля $\boldsymbol H$ при его цик­лич. из­ме­не­нии (уве­ли­че­нии и умень­ше­нии). При­чи­ной су­ще­ст­во­ва­ния маг­нит­но­го Г. яв­ля­ет­ся на­ли­чие в оп­ре­де­лён­ном ин­тер­ва­ле из­ме­не­ния $\boldsymbol H$ сре­ди со­стоя­ний маг­не­ти­ка, от­ве­чаю­щих ми­ни­му­му тер­мо­ди­на­мич. по­тен­циа­ла, ме­та­ста­биль­ных со­стоя­ний (на­ря­ду со ста­биль­ны­ми) и не­об­ра­ти­мых пе­ре­хо­дов ме­ж­ду ни­ми. Маг­нит­ный Г. мож­но так­же рас­смат­ри­вать как про­яв­ле­ние маг­нит­ных ори­ен­та­ци­он­ных фа­зо­вых пе­ре­хо­дов 1-го ро­да, для ко­то­рых пря­мой и об­рат­ный пе­ре­хо­ды ме­ж­ду фа­за­ми в за­ви­си­мо­сти от $\boldsymbol H$ про­ис­хо­дят, в си­лу ука­зан­ной ме­та­ста­биль­но­сти со­стоя­ний, при разл. зна­че­ни­ях $\boldsymbol H$.

Рис. 1. Петли магнитного гистерезиса:1 – максимальная, 2 – частная; а – кривая намагничивания, б и в – кривые перемагничивания; МR – остаточная намагниченность, Нс – коэрцитивная сила, Ms – намагничен…

На рис. 1 схе­ма­ти­че­ски по­ка­за­на ти­пич­ная за­ви­си­мость $M$ от $H$ в фер­ро­маг­не­ти­ке; из со­стоя­ния $M=0$ при $H=0$ с уве­ли­че­ни­ем $H$ зна­че­ние $M$ рас­тёт (осн. кри­вая на­маг­ни­чи­ва­ния, $\it а$) и в дос­та­точ­но силь­ном по­ле $H⩾H_{\text m}$ $M$ ста­но­вит­ся прак­ти­че­ски по­сто­ян­ной и рав­ной на­маг­ни­чен­но­сти на­сы­ще­ния $M_{\text s}$. При умень­ше­нии $H$ от зна­че­ния $H_{\text m}$ на­маг­ни­чен­ность из­ме­ня­ет­ся вдоль вет­ви $\it б$ и при $H=0$ при­ни­ма­ет зна­че­ние $M=M_{\text R}$ (ос­та­точ­ная на­маг­ни­чен­ность). Для раз­маг­ни­чи­ва­ния ве­ще­ст­ва ($M=0$) не­об­хо­ди­мо при­ло­жить об­рат­ное по­ле $H= –H_{\text c}$, на­зы­вае­мое ко­эр­ци­тив­ной си­лой. Да­лее при $H=–H_{\text m}$ об­ра­зец на­маг­ни­чи­ва­ет­ся до на­сы­ще­ния ($M=–M_{\text s}$) в об­рат­ном на­прав­ле­нии. При из­ме­не­нии $H$ от $–H_{\text m}$ до $+H_{\text m}$ на­маг­ни­чен­ность из­ме­ня­ет­ся вдоль кри­вой $\it в$. Вет­ви $\it б$ и $\it в$, по­лу­чаю­щие­ся при из­ме­не­нии $H$ от $+H_{\text m}$ до $–H_{\text m}$ и об­рат­но, об­ра­зу­ют замк­ну­тую кри­вую, на­зы­вае­мую мак­си­маль­ной (или пре­дель­ной) пет­лёй Г. Вет­ви $\it б$ и $\it в$ на­зы­ва­ют­ся, со­от­вет­ст­вен­но, нис­хо­дя­щей и вос­хо­дя­щей вет­вя­ми пет­ли Г. При из­ме­не­нии $H$ на от­рез­ке $[–H_1, H_1]$ с $H_1$ за­ви­си­мость $M(H)$ опи­сы­ва­ет­ся замк­ну­той кри­вой (ча­ст­ной пет­лёй Г.), це­ли­ком ле­жа­щей внут­ри макс. пет­ли ги­сте­ре­зи­са.

Опи­сан­ные пет­ли Г. ха­рак­тер­ны для дос­та­точ­но мед­лен­ных (ква­зи­ста­ти­че­ских) про­цес­сов пе­ре­маг­ни­чи­ва­ния. От­ста­ва­ние $M$ от $H$ при на­маг­ни­чи­ва­нии и раз­маг­ни­чи­ва­нии при­во­дит к то­му, что энер­гия, при­об­ре­тае­мая маг­не­ти­ком при на­маг­ни­чи­ва­нии, не пол­но­стью от­да­ёт­ся при paзмагничивании. Те­ряе­мая за один цикл энер­гия оп­ре­де­ля­ет­ся пло­ща­дью пет­ли Г. Эти по­те­ри энер­гии на­зы­ва­ют­ся гис­те­ре­зис­ны­ми. При ди­на­мич. пе­ре­маг­ни­чи­ва­нии об­раз­ца пе­ре­мен­ным маг­нит­ным по­лем $\boldsymbol H_{\sim}$ пет­ля Г. ока­зы­ва­ет­ся ши­ре ста­ти­че­ской вслед­ст­вие то­го, что к ква­зи­рав­но­вес­ным гис­те­ре­зис­ным по­те­рям до­бав­ля­ют­ся ди­на­ми­че­ские, ко­то­рые мо­гут быть свя­за­ны с вих­ре­вы­ми то­ка­ми (в про­вод­ни­ках) и ре­лак­са­ци­он­ны­ми яв­ле­ния­ми.

Фор­ма пет­ли Г. и наи­бо­лее важ­ные ха­рак­те­ри­сти­ки маг­нит­но­го Г. (гис­те­ре­зис­ные по­те­ри, $H_с$, $M_{\text R}$ и др.) за­ви­сят от хи­мич. со­ста­ва ве­ще­ст­ва, его струк­тур­но­го со­стоя­ния и темп-ры, от ха­рак­те­ра и рас­пре­де­ле­ния де­фек­тов в об­раз­це, а сле­до­ва­тель­но, от тех­но­ло­гии его пригoтовления и по­сле­дую­щих фи­зич. об­ра­бо­ток (те­п­ло­вой, ме­ха­нич., тер­мо­маг­нит­ной и др.). С маг­нит­ным Г. свя­за­но гис­те­ре­зис­ное по­ве­де­ние це­ло­го ря­да др. фи­зич. свойств, напр. Г. маг­ни­то­стрик­ции, Г. галь­ва­но­маг­нит­ных и маг­ни­то­оп­тич. яв­ле­ний и т. д.

Сег­не­то­элек­три­че­ский Г. – не­од­но­знач­ная за­ви­си­мость ве­ли­чи­ны век­то­ра элек­трич. по­ля­ри­за­ции $\boldsymbol P$ сег­не­то­элек­три­ков от на­пря­жён­но­сти $\boldsymbol E$ внеш­не­го элек­трич. по­ля при цик­лич. из­ме­не­нии по­след­не­го. Сег­не­то­элек­три­ки об­ла­да­ют в оп­ре­де­лён­ном тем­пе­ра­тур­ном ин­тер­ва­ле спон­тан­ной (т. е. са­мо­про­из­воль­ной, воз­ни­каю­щей в от­сут­ст­вие внеш­не­го по­ля) по­ля­ри­за­ци­ей $\boldsymbol P_{сп}$. На­прав­ле­ние по­ля­ри­за­ции мо­жет быть из­ме­не­но элек­трич. по­лем, при этом зна­че­ние $\boldsymbol P$ при дан­ном $\boldsymbol E$ за­ви­сит от пре­дыс­то­рии, т. е. от то­го, ка­ким бы­ло элек­трич. по­ле в пред­ше­ст­вую­щие мо­мен­ты вре­ме­ни. Сег­не­то­элек­трич. Г. име­ет вид ха­рак­тер­ной пет­ли (пет­ля Г.), осн. па­ра­мет­ра­ми ко­то­рой яв­ля­ют­ся ос­та­точ­ная по­ля­ри­за­ция $\boldsymbol P_{ост}$ при $\boldsymbol E=0$ и ко­эр­ци­тив­ное по­ле $\boldsymbol E_к$, при ко­то­ром про­ис­хо­дит из­ме­не­ние на­прав­ле­ния (пере­клю­че­ние) век­то­ра $\boldsymbol P_{сп}$. Для со­вер­шен­ных мо­но­кри­стал­лов пет­ля Г. име­ет фор­му, близ­кую к пря­мо­уголь­ной, и $\boldsymbol P_{ост}=\boldsymbol P_{сп}$. В ре­аль­ных кри­стал­лах ос­та­точ­ная по­ля­ри­за­ция мень­ше спон­тан­ной из-за раз­биения кри­стал­ла на до­ме­ны.

Су­ще­ст­во­ва­ние сег­не­то­элек­трич. Г. сле­ду­ет из фе­но­ме­но­ло­гич. тео­рии сег­не­то­элек­трич. яв­ле­ний, в со­от­вет­ст­вии с ко­то­рой рав­но­вес­ным зна­че­ни­ям $\boldsymbol P_{сп}$ при лю­бой темп-ре ни­же темп-ры сег­не­то­элек­трич. фа­зо­во­го пе­ре­хо­да от­ве­ча­ют два сим­мет­рич­ных ми­ни­му­ма тер­мо­ди­на­мич. по­тен­циа­ла, раз­де­лён­ные по­тен­ци­аль­ным барь­е­ром. При $E=±E_к$ один из ми­ни­му­мов ис­че­за­ет, и кри­сталл ока­зы­ва­ет­ся в со­стоя­нии с оп­ре­де­лён­ным на­прав­ле­ни­ем век­то­ра $\boldsymbol P_{сп}$. При цик­лич. пе­ре­клю­че­нии спон­тан­ной по­ля­ри­за­ции пло­щадь пет­ли Г. оп­ре­де­ля­ет гис­те­ре­зис­ные по­те­ри – ко­ли­че­ст­во энер­гии элек­трич. по­ля, пе­ре­хо­дя­щей в те­п­ло­ту. Ве­ли­чи­на ко­эр­ци­тив­но­го по­ля свя­за­на так­же с про­цес­са­ми за­ро­ж­де­ния и эво­лю­ции в элек­трич. по­ле сег­не­то­элек­трич. до­ме­нов – об­лас­тей кри­стал­ла с вы­де­лен­ным элек­трич. по­лем на­прав­ле­ни­ем век­то­ра спон­тан­ной по­ля­ри­за­ции.

Рис. 2. Петля упругого гистерезиса.

Уп­ру­гий Г. – не­од­но­знач­ная за­ви­си­мость ме­ха­нического на­пря­же­ния от де­фор­ма­ции уп­ру­го­го те­ла при цик­лич. при­ло­же­нии и сня­тии на­груз­ки. Гра­фик за­ви­си­мо­сти на­пря­же­ния $σ$ от де­фор­мации $ε$ от­ли­ча­ет­ся от от­рез­ка пря­мой ли­нии, со­от­вет­ст­вую­щей за­ко­ну Гу­ка, и пред­став­ля­ет со­бой пет­лю Г. (рис. 2). Пло­щадь этой пет­ли про­пор­цио­наль­на ме­ха­нической энер­гии, ко­то­рая рас­сея­лась (пре­вра­ти­лась в те­п­ло­ту) во вре­мя цик­ла.

По­яв­ле­ние уп­ру­го­го Г. в ме­тал­лах свя­за­но с тем, что в не­ко­то­рых зёр­нах по­ли­кри­стал­ла мик­ро­на­пря­же­ния су­ще­ст­вен­но пре­вы­ша­ют ср. на­пря­же­ния в об­раз­це, что при­во­дит к по­яв­ле­нию пла­стич. де­фор­ма­ций и тем са­мым к рас­сея­нию ме­ха­нич. энер­гии. В не­ко­то­рых слу­ча­ях вклад в уп­ру­гий Г. да­ют элек­тро­маг­нит­ные яв­ле­ния.

Уп­ру­гий Г. как про­яв­ле­ние от­ли­чия ре­аль­но­го уп­ру­го­го те­ла от иде­аль­но уп­ру­го­го на­блю­да­ет­ся у всех твёр­дых тел, да­же при весь­ма низ­ких темп-рах. Уп­ру­гий Г. яв­ля­ет­ся при­чи­ной за­ту­ха­ния сво­бод­ных ко­ле­ба­ний уп­ру­гих тел, за­ту­ха­ния в них зву­ка, умень­ше­ния ко­эф. вос­ста­нов­ле­ния при не­уп­ру­гом уда­ре и др. В об­щем слу­чае от­кло­не­ние уп­ру­го­сти от иде­аль­ной вклю­ча­ет­ся в по­ня­тие внут­рен­не­го тре­ния.

В биологии

Зависимость вероятности поимок Mustela nivalis (ласка) в t-году от плотности основной жертвы — Myodes glareolus (рыжая полевка) осенью предыдущего года (жирная линия) или весной текущего года (тонкая линия). Логит-регрессия по обучающей части ряда наблюдений — 1994—2004 гг. Средний Урал, темнохвойная южная тайга, Висимский заповедник.

Гистерезисные свойства характерны для скелетных мышц млекопитающих.

В экологии популяций система «хищник — жертва» обладает гистерезисом и/или запаздыванием численного отклика хищника.

Гистерезис в электронике

В электротехнике и электронике свойством гистерезиса пользуются устройства, которые используют различные магнитные взаимодействия. Например, магнитные носители информации или триггер Шмитта.

Это свойство необходимо знать, чтобы использовать его для подавления шумов в момент переключения определенных логических сигналов (дребезга контактов, быстрых колебаний).

Упругий гистерезис бывает двух видов: динамический и статический. В первом случае график будет изображать постоянно изменяющуюся петлю, во втором – равномерную.

Во всех приборах электронного типа наблюдается тепловой гистерезис. После того как прибор был нагрет, а затем охлажден, его характеристики не принимают прежнего значения.
Это происходит из-за того, что неодинаковое тепловое расширение корпусов микросхем, кристаллодержателей, печатных плат и кристаллов полупроводников вызывает механическое напряжение, сохраняющееся и после охлаждения.

Наиболее заметно это явление в прецизионных источниках опорного напряжения, которые используются в измерительных преобразователях.

Гистерезис в разных материалах

Гистерезис – это комплексное понятие, характеризующее способность вещества накапливать энергию магнитного поля или другой величины за счет имеющихся магнитных связей между молекулами вещества или особенностей работы системы. Но таким эффектом могут обладать не только сплавы железа, кобальта и никеля. Титанат бария даст несколько иной результат, если его поместить в поле с определенной напряженностью.

Так как он является сегнетоэлектриком, то в нем наблюдается диэлектрический гистерезис. Обратная петля гистерезиса образуется при противоположной полярности подводимого к среде напряжения, а величина противоположного поля, действующего на материал, получило название коэрцитивная сила.

При этом величина поля может предшествовать разным напряженностям, что связано с особенностями фактического состояния диполей – магнитных моментов после прошлого намагничивания. Также на процесс влияют различные примеси, содержащиеся в составе материала. Чем их больше, тем труднее сдвинуть стенки диполей, поэтому остается так называемая остаточная намагниченность.

В гидрологии

Зависимость Q=f(H) — связь расходов и уровней воды в реках — имеет петлеобразную форму.

Использование явления гистерезиса

Одним из основных направлений использования ферромагнитных элементов является создание записывающих устройств. Для примера можно привести металлическую проволоку в бортовых самописцах водного и воздушного транспорта, ферритовые кольца оперативной памяти и триггеры Шмидта, а также другие магнитные носители.

На этой основе работают электромоторы, устройства шумо-, и помехоподавления, в том числе предназначенные для коммутации логических схем.

Магнитный гистерезис, точнее его действие, активно используется в научных исследованиях, в том числе для управления некоторым оборудованием. Использование графического изображения петель гистерезиса в основе своей применятся для упрощения расчётов характеристик магнитных полей и параметров систем.

Триггер Шмидта

Триггер Шмидта

Что влияет на петлю гистерезиса?

Казалось бы, гистерезис – это больше внутренний эффект, который не виден на поверхности материала, но он сильно зависит не только от типа самого материала, но и от качества и вида его механической обработки. Например, железо переходит в насыщение при напряженности равной 1 э, а сплав магнико достигает своей критической точки только при 580 э. Чем больше дефектов на поверхности материала, тем требуется больше напряженность магнитного поля, чтобы вывести его в насыщение.

В результате намагничивания и размагничивания в материале выделяется тепловая энергия, которая равна площади петли гистерезиса. Также к потерям в ферромагнетике можно отнести действие вихревых токов и магнитной вязкости вещества. Это обычно наблюдается при изменении частоты магнитного поля в большую сторону.

В зависимости от характера поведения ферромагнетика в среде с магнитным полем, различают статический и динамический гистерезис. Первый наблюдается при номинальной частоте напряжения, но с ее ростом площадь графика увеличивается, что приводит и к росту потерь.

Настройка терморегулятора

Терморегуляторы, подходящие для ЦО и для твердотопливного котла, актуальны как никогда. Они гарантированно экономят финансы и природные ресурсы.

В ситуации, когда отопление централизованное, желательно установить механический регулятор для контроля подачи теплоносителя. Очень простой в работе, поворачивая на увеличение или уменьшение диаметра трубы, легко отрегулировать желаемое давление подачи. Устройство подключают на рамке, как правило, в подвальном помещении. 

Для обладателей квартир в новостройках (с горизонтальной разводкой труб), помимо регулировки теплоносителя, на рамке дома есть возможность установки регулятора для поддержания комфортной температуры воздуха в квартире.

Устанавливается термостат вверху или внизу батареи (по тех. условиям).
 

  1. Проверьте циркуляцию теплоносителя в доме: при полном отключении радиаторов квартиры, отопление по стояку вверх (подача) и вниз (обратка) не нарушено. 
  2. Выставьте температуру.

Подключить терморегулятор к системе водяного пола можно только к электронным моделям (со внешними датчиками температуры), которые корректно регулируют объем подачи теплоносителя. 

Теплый пол

Широкий спектр применения:

  • инкубатор, 
  • система подогрева пола,
  • отопление.

Какие именно терморегуляторы подходят под ваши требования, помогут разобраться специалисты и продавцы-консультанты. Чтобы иметь представление о работе понравившейся модели, читайте отзывы на специфических форумах.

Читайте: Что лучше — моющий пылесос или пароочиститель: 4 отличия, сравнение и советы по выбору

Другие свойства

Кроме магнитного гистерезиса, также различают гальвономагнитный и магнитострикционный эффекты. В этих процессах наблюдается изменение электрического сопротивления за счет механической деформации материала. Сегнетоэлектрики под действием деформационных сил способны вырабатывать электрический ток, что объясняется пьезоэлектрическим гистерезисом.

В философии

Жиль Делёз использует понятие гистерезиса при характеристике монадологии Лейбница.

Использование графического изображения гистерезиса для расчётов

Для наглядного эксперимента можно собрать простую схему, представленную ниже:

  • резистором R1 ограничивают переменный ток, проходящий через обмотку катушки;
  • с элемента R2 снимают напряжение для формирования картинки на экране осциллографа;
  • емкость конденсатора подбирают таким образом, чтобы 1/(w*С) получилось намного меньше R3.
Эксперимент

Эксперимент

После подключения к осциллографу на экране можно наблюдать петлю гистерезиса. Это изображение с учетом реального масштаба можно использовать для расчетов и оценки характеристик созданной катушки. В следующем списке приведено соответствие отдельных отрезков рассмотренным выше параметрам:

  • ОА – коэрцитивная сила;
  • ОС – остаточная индукция;
  • ОД – индукция насыщения;
  • ОВ – магнитное поле.

К сведению. По установленной площади петли можно определить потери. Размер этой области соответствует работе, которая затрачена на компенсацию коэрцитивных сил. Эта энергия разогревает ферромагнетик и фактически расходуется впустую.

Математические модели гистерезиса

Появление математических моделей гистерезисных явлений обуславливалось достаточно богатым набором прикладных задач (прежде всего в теории автоматического регулирования), в которых носители гистерезиса нельзя рассматривать изолированно, поскольку они являлись частью некоторой системы. В 1960-х годах в Воронежском университете начал работать семинар под руководством М. А. Красносельского, на котором создавалась строгая математическая теория гистерезиса[3].

Позднее, в 1983 году появилась монография М. А. Красносельского и А. В. Покровского[4], в которой различные гистерезисные явления получили формальное описание в рамках теории систем: гистерезисные преобразователи трактовались как операторы, зависящие от своего начального состояния как от параметра, определённые на достаточно богатом функциональном пространстве (например, в пространстве непрерывных функций), действующие в некотором функциональном пространстве.

Простое и интуитивно-понятное параметрическое описание различных петель гистерезиса предложено в работе Р. В. Лапшина.[5] Помимо классических петель замена в данной модели гармонических функций на трапецеидальные или треугольные импульсы позволяет получить кусочно-линейные петли гистерезиса, которые часто встречаются в задачах дискретной автоматики. Имеется реализация модели гистерезиса на языке программирования R (пакет Hysteresis[6]).

Примечания

  1. Harrison, L.
    Current Sources & Voltage References. — Newnes, 2005. — 569 p. — (Electronics & Electrical). — ISBN 9780750677523., p. 335
  2. Горшков М. К. Общественное мнение. Учебное пособие. — М., Политиздат, 1989. — 384 стр.
  3. Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983.
  4. Красносельский М. А., Покровский А. В. Системы с гистерезисом. — М.: Наука, 1983. — 271 с.
  5. R. V. Lapshin (1995). «Analytical model for the approximation of hysteresis loop and its application to the scanning tunneling microscope» (PDF). Review of Scientific Instruments
    (AIP)

    66 (9): 4718-4730. DOI:10.1063/1.1145314. ISSN 0034-6748. (перевод на русский).

  6. Package Hysteresis (Tools for Modeling Rate-Dependent Hysteretic Processes and Ellipses). R-project (November 20, 2013). Проверено 11 июня 2020.

Ссылки

  • Что такое гистерезис? — о магнитном гистерезисе

Ссылки

  • Что такое гистерезис?
  • Что такое гистерезис в электротехнике и электронике?

Бытовой термостат

Здравствуйте. Обзор бытового термостата — устройства для поддержания постоянной температуры. В поиске на али много предложений, но это либо diy модули, либо встраиваемые, либо термостаты с ограниченным температурным интервалом для аквариумов. А вот таких как сабж очень мало… Термостат представляет собой конструктивно законченное изделие не требующее инсталляции. А по простому- включил в сеть и все заработало. Получил я его давно, поэтому упаковки уже нет. И лежал он у меня год, ждал своего часа, Но тут недавно прикупил я ветчинницу и вспомнил о покупке. Технические характеристики:

Рабочее напряжение: 90 В ~ 250 В Номинальный ток: 10A Мощность потребления: ≤ 3 w Мощность потребление стоял: ≤. 5 Вт Точность Контроль температуры: 0.1 градусов Разрешение: 0.1 градусов погрешность измерения: ± 3 градусов Управление диапазон:-40 ~ 120 градусов Поворотный диапазон Температура: 0.1 ~ 30 градусов Рабочая Температура:-20 ~ 70 градусов Рабочая влажность: 90% без конденсации Температурный датчик: NTC 25 градусов = 10 К B3435 ± 1%, длина провода датчика1.48 м Сетевой шнур 1.45 м реле: 10A/AC220V Размеры: 15.5*6*2.8 см/6.1*2.4 * 1.1in Вес: 245.2 г

Прибор собран в компактном корпусе из пластика. Имеет универсальную розетку и большой, яркий лед дисплей.


По бокам кнопки настройки


Индикация прекрасно видна с любого угла.


Сзади имеется гнездо для вертикального крепления.

Герметичный датчик температуры.


Маркировка на сетевом шнуре.


Настройка термостата. Длительно нажимается верхняя левая кнопка и правыми курсорными кнопками выбирается нужный режим С- срабатывание по нижней температуре,

Н- срабатывание по верхней температуре.


Далее короткими нажатиями верхней левой клавишей последовательно переключаемся, а курсорными справа настраиваем P1 максимальная температура


Р2 минимальная температура


Величина гистерезиса от 0,1 до 30 градусов. Гистерезис это диапазон температур отличающихся от установленной, чем меньше гистерезис, тем ближе температура к постоянной, тем больше срабатываний реле.


При нажатии левой нижней кнопки показатели сбрасываются… Возможности калибровки в этой модели наверное нет. При длительном нажатии левой нижней кнопки показания температурного датчика начинаю мигать, но изменить их нельзя.Немного напрягает установка нужной температуры. Дело в том, что шаг — 0,1 градуса и чтобы перевести прибор, например с 36 на 80 градусов нужно нажать кнопку 440 раз. Можно конечно так много не нажимать, а зажать кнопку, тогда показатели побегут, но очень неспешно. Заглянем внутрь


Коммутация производится электро-механическим реле JQC-3FF. При постоянной эксплуатации термостата это будет расходный материал. Смотрим — сколько стоит на али Стоит недорого и предложений много. Так, что с заменой реле проблем не будет. Теперь проверю термостат на практике — во время варки колбасы в ветчиннице. Сооружаю вот такую установку. Электрическую плитку подключаю к термостату, термостат в сеть. Датчик температуры помещаю в воду.


Для проверки устанавливаю спиртовый термометр. На всех уровнях температура совпадает с показаниями термостата. Температуру тающего льда показал ( — ) 0,2 градуса.


С открытой емкостью при выставленном гистерезисе 1,5 градуса термостат включался один раз в 8 минут. 2 минуты на нагревание, 6 минут на охлаждение. Если емкость с водой закрыть, цикл увеличивается до 15 минут- 2 минуты на нагревание, 13 минут на охлаждение. Еще следует учитывать, что вода будет нагреваться выше установленной на термостате температуры на 1 -1,5 градуса, за счет теплоемкости плитки, посуды, да и вода перемешивается не мгновенно. Поэтому гистерезис будет равен не 1,5, а 2,5 — 3 градусам. В заключении хочу сказать, что данный прибор весьма удобен и незаменим для любительского сыроварения, колбасоварения, самогоноварения, пивоварения, пастеризации и других процедур на кухне требующих постоянства температуры. Спасибо за внимание

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...