Что такое диэлектрические потери и из-за чего они возникают?

Что такое диэлектрические потери?

Применение электроизоляционных материалов основано на том, что они препятствуют электрическому току преодолевать некоторое пространство, ограниченное изолятором. Идеальный изолятор должен абсолютно исключить условия для проводимости электрического тока. К сожалению, в природе не существует таких материалов. Таких диэлектриков также не сумели создать в лабораторных условиях.

Теоретически можно обосновать существование идеальных изоляторов, но синтезировать на практике такие вещества не реально, так как даже ничтожно малая доля примесей образует диэлектрическую проницаемость. Иначе говоря, рассеяния энергии в диэлектрической среде будут наблюдаться всегда. Речь может идти об усилиях, направленных на уменьшение таких потерь.

Исходя из того, что часть электроэнергии неизбежно теряется в изоляторе, был введён термин «диэлектрические потери» – необратимый процесс преобразования в теплоту энергии электрического поля, пронизывающего диэлектрическую среду, То есть, это электрическая мощность, направленная на нагревание изоляционного материала, пребывающего в зоне действия электрического поля.

Значение потерь определяется как отношение активной мощности к реактивной. Обычно активная мощность, потребляемая диэлектриком очень мала, по сравнению с реактивной мощностью. Это значит, что искомая величина тоже будет мизерной – сотые доли от единицы. Для вычислений используют величину «тангенс угла», выраженную в процентах.

Электрическую характеристику, выражающую рассеивающее свойство диэлектрика, называют тангенсом угла диэлектрических потерь. При расчётах принято считать, что диэлектрик является изоляционным материалом конденсатора, меняющего ёмкость и дополняющий до 90º угол сдвига фаз φ, образованный векторами напряжения и тока в цепи. Данный угол обозначают символом δ и называют углом рассеивания, то есть, диэлектрических потерь. Величина, численно равна тангенсу данного угла ( tgδ ), это и есть та самая характеристика диэлектрического нагрева.

tgδ применяется в расчётах для определения величины рассеиваемой мощности по соответствующей формуле. Поэтому его вычисление имеет практическое значение. Введение понятия тангенса угла позволяет вычислять относительные значения диэлектрических потерь. А это позволяет сравнивать по качеству различные изоляторы.

Именно этот показатель или просто угол δ производители трансформаторных масел указывают на упаковке своей продукции. По величине угла ( tg δ ) можно судить о качестве изолятора: чем меньше угол δ, тем высшие диэлектрические свойства проявляет изоляционный материал.

Как определить тангенс угла диэлектрических потерь

В силовых трансформаторах тангенс угла рассчитывается как диэлектрик конденсатора. Берется в расчет угол, который дополняет до прямого, основной угол между сдвигами фаз тока и напряжения.

Расположенный внутри этих плоскостей угол и является искомым диэлектрических потерь.

Для измерения принимают, что конденсатор относится к идеальному типу. Он может быть включен последовательным образом, то есть в последовательно включенным сопротивлением активной нагрузки, или по параллельной схеме. Для первой мощность составит Р=(U2ωtgδ)/(1+tg2δ), а для второй — Р=U2ωtgδ. Угол по этим расчетам вычислить несложно, зная емкость конденсатора и показатели сопротивления. Обычно значение его не превышает десятых или сотых долей единицы, определяется в графиках процентами. При этом увеличиваются, если увеличивается напряжение и частота работы. Для снижения коэффициента используются изоляционные материалы.

Методика расчета

Диэлектрические потери требуют измерения по достаточно сложной системе просчета. Эта система состоит из нескольких этапов. В первую очередь необходимо рассчитать мощность, которой обладает диэлектрик и что рассеивается в нем при переменном напряжении. Определяется она по формуле:

Pa=U*Ia

Ниже на рисунке изображены схемы последовательного (а) и параллельного (б) подключения конденсатора и активного сопротивления, а также векторные диаграммы токов в них.

Схемы подключения конденсатора и активного сопротивления

Таким образом, можно определить активный ток, формула расчета которого будет следующая:

Активный ток

Вторая величина — это тангенс угла вектора полного значения тока до его емкости. Этот угол еще называют диэлектрический угол потерь. Ic — емкость диэлектрика.

Делая выводы из полученных данных, получается более развернутая формула для расчета мощности:

Мощность

При этом ток рассчитывается по формуле: угловая частота*емкость конденсатора. Исходя из предоставленных формул, можно рассчитать мощность следующим образом:

Расчет мощности

Исходя из этой формулы видно, от каких факторов зависят качество и надежность такого устройства, как диэлектрик. Если смотреть по графику, то видно, что свойства возрастают при уменьшении угла.

Оборудование, материаловедение, механика и …

Статьи Чертежи Таблицы О сайте Реклама

Диэлектрические потери в твердых диэлектриках. В неполярных твердых диэлектриках диэлектрические потери вызваны электропроводностью, а в полярных — электропроводностью и дипольной поляризацией. Выше (см. 5.3) отмечалось, что в твердых диэлектриках дипольная поляризация представляет собой деформацию звеньев, сегментов или ориентацию полярных групп молекул в электрическом поле. Изменение tg б от температуры и частоты для твердых неполярных и полярных диэлектриков такие же, как и для жидких (рис. 5.21—5.23). [c.164]

Диэлектрические потери в твердых диэлектриках [c.25]

ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ В ТВЕРДЫХ ДИЭЛЕКТРИКАХ [c.53]

Диэлектрические потери в твердых диэлектриках необходимо рассматривать в связи с их структурой. Твердые вещества обладают разнообразным составом и строением в них возможны все виды диэлектрических потерь. [c.53]

Классификация диэлектрических потерь в твердых диэлектриках [c.82]

Диэлектрические потери в твердых веществах неоднородной структуры. К твердым веществам этого типа, используемым в качестве диэлектриков, принадлежат материалы, в состав которых входит не менее двух компонентов, механически смешанных друг с другом. К неоднородным диэлектрикам относится прежде всего керамика. Любой керамический материал представляет собой сложную многофазную систему. В составе керамики различают кристаллическую фазу, стекловидную и газовую (газы в закрытых порах). [c.56]

Для удобства рассмотрения диэлектрических потерь в твердых веществах, последние можно подразделить на четыре группы диэлектрики молекулярной структуры, ионной структуры, сегнетоэлектрики и диэлектрики неоднородной структуры. [c.75]

Закономерности, отмеченные выше для диэлектрических потерь в полярных жидкостях ( 2-3, б), в основном соответствуют и закономерностям в твердых полярных диэлектриках. В органических твердых диэлектриках диэлектрические потери, связанные с дипольной поляризацией, изучены более полно, чем в неорганических. [c.56]

Диэлектрические потери в сегнетоэлектриках определяются электропроводностью и доменной поляризацией. Изменения tg й от температуры и частоты для них такие же. как и для твердых полярных диэлектриков. [c.165]

Диэлектрические потери, характеризующие превращение части электрической энергии в тепловую, являются важным электрофизическим параметром диэлектрика. Величина этих потерь, а также зависимость их от частоты и температуры свидетельствуют о тех или иных особенностях механизма поляризации. Диэлектрические потери обычно в значительной степени изменяются при введении в диэлектрик различного рода примесей. В твердых диэлектриках в зависимости от концентрации примесей или структурных дефектов величина диэлектрических потерь может изменяться в десятки и сотни раз, в то время как изменение величины [c.73]

Закономерности, отмеченные выше для диэлектрических потерь в полярных жидкостях, в основном соответствуют и закономерностям в твердых полярных диэлектриках. В органических твердых диэлектриках диэлектрические потери, связанные с дипольной поляризацией, изучены более полно, чем в неорганических, в частности в кристаллических, имеющих в узлах решетки полярные молекулы или полярные группы атомов. [c.36]

Электротепловой пробой твердого диэлектрика заключается в его разрушении, вызванном нагреванием диэлектрическими потерями. В соответствии со сказанным в 2-3 выделение тепла в единице объема данного материала за единицу времени при переменном напряжении прямо пропорционально величинам напряженностей электрического поля Е и частоте I [c.83]

Ток в диэлектрике, вызванный электропроводностью, называется током утечки. В твердых диэлектриках различают два тока утечки объемный (/об или / ), проходящий между электродами через толщу диэлектрика, и поверхностный (/,,ов или / ), проходящий по поверхности диэлектрика. Сумма этих токов определяет общий ток утечки. Соответственно двум видам токов утечки различают объемное удельное сопротивление (роб, Рв или р) и поверхностное удельное сопротивление (р,,ов или р ). Удельное объемное сопротивление диэлектриков определяют обычно как сопротивление образца кубика с ребром 1 см, когда постоянный ток проходит через две параллельные его грани. Единица измерения р при таком определении — ом умножен на сантиметр. Удельное поверхностное сопротивление численно равно сопротивлению квадрата (любого размера) поверхности материала, когда постоянный ток проходит через две противоположные стороны квадрата. Единица измерения р при таком определении сопротивления — ом. Удельное сопротивление диэлектрика является характеристикой, определяющей ток утечки в нем. Токи утечки в диэлектрике обусловливают мощность диэлектрических потерь [c.13]

Твердые диэлектрики характеризуются разнообразным составом и строением, и в соответствии с этим в них возможны все виды.диэлектрических потерь. Диэлектрические потери у твердых диэлектриков следует рассматривать по следующим структурным группам неполярные диэлектрики, полярные диэлектрики, ионные кристаллы, сегнетоэлек-трики, сложные (композиционные) диэлектрики не однородной структуры. [c.25]

Твердые диэлектрики являются более или менее плохими проводниками тепла, что связано с их низкой электропроводностью. Величина диэлектрических потерь Б них, как правило, сильно возрастает с ростом температуры. В этом и заключается предпосылка к электро-тепловому пробою. Если при данио1М приложенном напряжении во внутренних объемах диэлектрика не может установиться тепловое равновесие, то при достаточно длительном воздействии напряжения произойдет разрушение диэлектрика он обуглится или расплавится, что приведет к короткому замыканию электродов — к электротеиловому пробою. Возможность электротеплового пробоя сводится к вопросу теплового равновесия если количество тепла, выделяющегося внутри диэлектрика за счет диэлектрических потерь будет все время больше количества тепла, выделяющегося в дан-1 ых условиях в окружающую среду, то электротепловой пробой неизбежен при достаточно длительном приложении напряжения. В большинстве случаев изменение мощности диэлектрических потерь технических твердых диэлектриков может быть выражено следующей форму-6 83 [c.83]

Структурная поляризация обусловлена наличием слоев с различной проводимостью, образованием объемных зарядов, особенно при высоких градиентах напряжения (высоковольтная поляризация). Происходит в твердых диэлектриках слоистой или другой неоднородной структуры (гетинаксы, текстолнты, миканиты, бумажно-бакелитовые изоляторы проходные), связана с большими диэлектрическими потерями, как поляризация -замедленного типа. [c.8]

В твердых диэлектриках сложной, неоднородной структуры, у ко-.торых одновременно представлены несколько фаз (аморфная, кристаллическая, газовая, жидкая), диэлектрические потери зависят от по- [c.26]

При повышении напряженности электрического поля в твердом диэлектрике, так же как в жодком и газообразном возникают ионизационные процессы, связанные с увеличением сквозного тока, высоковольтной поляризацией, ударной ионизацией, диэлектрическими потерями, нагревом диэлектрика. В сильных полях нарушается закон Ома плотность тока растет по экспоненциальному закону в функции напряженности поля напряжение начинает падать, а ток резко возрастает, стремясь к бесконечности — наступает пробой диэлектрика. В случае большой мощности ток расплавляет материал диэлектрика, прожигает [c.36]

Таким образом, в твердых диэлектриках могут быть потери, обусловленные поляризацией, сквозной электропроводностью, неоднородностью структуры и ионизацией. Потери за счет электронной поляризации весьма незначительны. К материалам с такими потерями относят полиэтилен, фторопласт, полистирол, отвержденную полиэфирную смолу. И наоборот, материалы с ди-польно-релаксапионной и ионно-релаксационной поляризацией обладают большими потерями. К таким материалам относят полиуретаны, эбонит, оргстекло, фенолформальдегидные и совмещенные эпоксидные смолы, неорганические стекла. Но чаще всего в твердых неоднородных диэлектриках, какими являются стеклопластики, могут быть все виды потерь одновременно. Величину диэлектрических потерь можно характеризовать удельными по- [c.100]

Закономерности, отмеченные выше для диэлектрических потерь в полярных жидкостях, в основном соответствуют и закономерностям в твердых по л ярвых диэлектриках. В органических твердых диэлектриках диэлектрические [c.28]

Смотреть страницы где упоминается термин Диэлектрические потери в твердых диэлектриках: [c.56]    [c.318]    [c.56]    [c.72]    [c.95]    [c.71]    [c.72]    [c.56]    [c.84]    [c.85]    Смотреть главы в:

Электротехнические материалы -> Диэлектрические потери в твердых диэлектриках

Электротехнические материалы Издание 3 -> Диэлектрические потери в твердых диэлектриках

Электротехнические материалы Издание 5 -> Диэлектрические потери в твердых диэлектриках

Электротехнические материалы Издание 3 -> Диэлектрические потери в твердых диэлектриках

Диэлектрик

Диэлектрическая (-йе)

Диэлектрические потери

Диэлектрические твердых диэлектриках

Лабораторная работа 2. Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь твердых диэлектриков

Потери в диэлектриках

Потери твердых диэлектрика

Твердые диэлектрики

ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ

4.1 Основные понятия

Диэлектрическими потерями называют энергию, рассеиваемую в единицу времени в диэлектрике при воздействии на него электрического поля и вызывающую нагрев диэлектрика.

Потери энергии в диэлектриках наблюдаются как при переменном напряжении, так и при постоянном, поскольку в материале обнаруживается сквозной ток, обусловленный проводимостью. При постоянном напряжении, когда нет периодической поляризации, качество материала характеризуется значениями удельных объемного и поверхностного сопротивлений. При переменном напряжении необходимо использовать какую-то другую характеристику качества материала, так как в этом случае, кроме сквозной электропроводности, возникает ряд добавочных причин, вызывающих потери энергии в диэлектрике.

Диэлектрические потери в электроизоляционном материале можно характеризовать рассеиваемой мощностью, отнесенной к единице объема, или удельными потерями. Чаще для характеристики способности диэлектрика рассеивать энергию в электрическом поле пользуются углом диэлектрических потерь, а также тангенсом этого угла.

Углом диэлектрических потерь называется угол, дополняющий до 90° угол сдвига фаз φ между током и напряжением в емкостной цепи. В случае идеального диэлектрика вектор тока в такой цепи будет опережать вектор напряжения на 90°, при этом угол δ будет равен нулю. Чем больше рассеиваемая в диэлектрике мощность, переходящая в тепло, тем меньше угол сдвига фаз φ и тем больше угол диэлектрических потерь δ и его функция tgδ.

Недопустимо большие диэлектрические потери в электроизоляционном материале вызывают сильный нагрев изготовленного из него изделия и могут привести к его тепловому разрушению.

Даже если напряжение, приложенное к диэлектрику, недостаточно велико для того, чтобы за счет диэлектрических потерь мог произойти недопустимый перегрев, то и в этом случае большие диэлектрические потери могут принести существенный вред, увеличивая, например, активное сопротивление колебательного контура, в котором использован данный диэлектрик, а, следовательно, и величину затухания.

Природа диэлектрических потерь в электроизоляционных материалах различна в зависимости от агрегатного состояния вещества.

Д

Рисунок 4.1 — Зависимость заряда от напряжения для линейного

диэлектрика без потерь (а),

с потерями (б)

0.gif

иэлектрические потери могут обусловливаться сквозным током или, как указывалось при рассмотрении явления поляризации, активными составляющими поляризационных токов. При изучении диэлектрических потерь, непосредственно связанных с поляризацией диэлектрика, можно изобразить это явление в виде кривых, представляющих зависимость электрического заряда на обкладках конденсатора с данным диэлектриком от приложенного к конденсатору напряжения (рисунок 4.1).

При отсутствии потерь, вызываемых явлением поляризации, заряд линейно зависит от напряжения (рисунок 4.1,а) и такой диэлектрик называется линейным. Если в линейном диэлектрике имеет место замедленная поляризация, связанная с потерями энергии, то кривая зависимости заряда от напряжения приобретает вид эллипса (рисунок 4.1,б). Площадь этого эллипса пропорциональна количеству энергии, которая поглощается диэлектриком за один период изменения напряжения.

В случае нелинейного диэлектрика — сегнетоэлектрика, кривая зависимости заряда от напряжения приобретает вид петли такого же характера, как петля гистерезиса у магнитных материалов, и в этом случае площадь петли пропорциональна потерям энергии за один период.

В технических электроизоляционных материалах, помимо потерь от сквозной электропроводности и потерь от замедленной поляризации, возникают диэлектрические потери, которые сильно влияют на электрические свойства диэлектриков. Эти потери вызываются наличием изолированных друг от друга посторонних проводящих или полупроводящих включений углерода, окислов железа и т.д. и значительны даже при малом содержании таких примесей в электроизоляцион-ном материале.

В случае высоких напряжений потери в диэлектрике возникают вследствие ионизации газовых включений внутри диэлектрика, особенно интенсивно происходящей при высоких частотах.

Рассмотрим схему, эквивалентную конденсатору с диэлектриком, обладающим потерями, находящемуся в цепи переменного напряжения. Эта схема должна быть выбрана с таким расчетом, чтобы активная мощность, расходуемая в данной схеме, была равна мощности, рассеиваемой в диэлектрике конденсатора, а ток опережал напряжение на тот же угол, что и в рассматриваемом конденсаторе.

Поставленная задача может быть решена заменой конденсатора с потерями идеальным конденсатором с последовательно включенным активным сопротивлением (последовательная схема) или идеальным конденсатором, шунтированным активным сопротивлением (параллельная схема). Такие эквивалентные схемы, конечно, не дают объяснения механизма диэлектрических потерь и введены только условно.

Последовательная и параллельная схемы представлены на рисунке 4.2. Там же даны соответствующие диаграммы токов и напряжений. Обе схемы эквивалентны друг другу, если при равенстве полных сопротивлений z1=z2=z равны их активные и реактивные составляющие. Это условие будет соблюдаться, если углы сдвига тока относительно напряжения равны и значения активной мощности одинаковы.

e2d79344.png

Рисунок 4.2 — Векторные диаграммы и эквивалентные схемы

диэлектрика с потерями: а- последовательная, б — параллельная

Далее выразим мощности для последовательной и параллельной схем через емкости Сs (последовательно включенная емкость) и Ср (параллельно включенная емкость) и угол δ.

Для последовательной схемы имеем

e65c431.gif (4.1)

и 9d25ca2e.gif (4.2)

Для параллельной схемы имеем

2a6dd29a.gif (4.3)

e266f11.gif. (4.4)

Приравнивая полученные выражения для мощностей и tgδ, находим соотношения между емкостями и сопротивлениями для двух схем включения.

d9e9c881.gif (4.5)

84a81ef3.gif (4.6)

Для доброкачественных диэлектриков можно пренебречь значением tg2δ по сравнению с единицей в формуле (4.6) и считать Ср=Cs=С. Выражения для мощности, рассеиваемой в диэлектрике, в этом случае будут одинаковы для обеих схем:

cbd259e8.gif (4.7)

где U  напряжение, В;

ω  угловая частота, c-1;

С  емкость, Ф.

Сопротивление R в параллельной схеме, как следует из выражения (4.7), во много раз больше сопротивления r.

Выражение для удельных диэлектрических потерь, т.е. мощности, рассеиваемой в единице объема диэлектрика, имеет вид:

51f648b2.gif (4.8)

где р  удельные потери, Вт/м3;

ω = 2/f  угловая частота, с-1;

Е  напряженность электрического поля, В/м.

Действительно, емкость между противоположными гранями куба со стороной 1 м будет C1=εε0, реактивная составляющая удельной проводимости

1fdecd84.gif (4.9)

а активная составляющая

126e991e.gif (4.10)

Следует отметить, что емкость диэлектрика с большими потерями становится совершенно условной величиной, зависящей от выбора той или иной эквивалентной схемы. Отсюда и диэлектрическая проницаемость материала с большими потерями при переменном напряжении также условна. Угол диэлектрических потерь от выбора схемы не зависит.

В качестве примера в таблице 4.1 приведены значения ε для некоторых материалов, имеющих высокое значение tg δ.

Определив каким-либо методом при некоторой частоте параметры эквивалентной схемы исследуемого диэлектрика (СР и R или CS и r), в общем случае нельзя считать полученные значения емкости и сопротивления присущими данному конденсатору и пользоваться этими данными для расчета угла потерь при другой частоте. Такой расчет может быть сделан только в том случае, если эквивалентная схема имеет определенное физическое обоснование. Так, например, если известно для данного диэлектрика, что потери в нем определяются только потерями от сквозной электропроводности в широком диапазоне частот, то угол потерь конденсатора с таким диэлектриком может быть вычислен для любой частоты, лежащей в этом диапазоне, по формуле

facd03a5.gif (4.11)

где С и R  постоянные, измеренные при данной частоте.

Таблица 4.1 — Значения ε диэлектриков с большими потерями

Характеристика

Материал

Увлажненная

пластмасса

Увлажненная

кабельная бумага

tgδ

0,66

0,35

ε по последовательной схеме

28

4,8

ε по параллельной схеме

19,5

4,3

Потери в таком конденсаторе не зависят от частоты и определяются выражением

6977b03e.gif (4.12)

Наоборот, если потери в конденсаторе обусловливаются главным образом сопротивлением подводящих проводов, а также сопротивлением самих электродов, то рассеиваемая мощность в таком конденсаторе будет возрастать пропорционально квадрату частоты:

9a162beb.gif (4.13)

Из последнего выражения следует сделать важный практический вывод: конденсаторы, предназначенные для работы на высокой частоте, должны иметь по возможности малое сопротивление как обкладок, так и соединительных проводов и переходных контактов.

Из полученных выражений (4.7 и 4.8) следует, что диэлектрические потери приобретают серьезное значение для материалов, используемых в установках высокого напряжения, в высокочастотной аппаратуре, поскольку величина диэлектрических потерь пропорциональна квадрату приложенного к диэлектрику напряжения и частоты поля.

Материалы, предназначенные для применения в указанных условиях, должны отличаться малыми значениями потерь и диэлектрической проницаемости, так как в противном случае мощность, рассеиваемая в диэлектрике, может быть недопустимо большой.

4.2 Виды диэлектрических потерь в электроизоляционных

материалах

Диэлектрические потери по их особенностям и физической природе можно подразделить на четыре основных вида:

1) диэлектрические потери, обусловленные поляризацией;

2) диэлектрические потери сквозной электропроводности;

3) ионизационные диэлектрические потери;

4) диэлектрические потери, обусловленные неоднородностью структуры.

Диэлектрические потери, обусловленные поляризацией, особенно отчетливо наблюдаются в веществах, обладающих релаксационной поляризацией: в диэлектриках дипольной структуры и в диэлектриках ионной структуры с неплотной упаковкой ионов.

Релаксационные диэлектрические потери вызываются нарушением теплового движения частиц под влиянием сил электрического поля. Это нарушение приводит к рассеянию энергии и нагреву диэлектрика.

В температурной зависимости тангенса угла релаксационных диэлектрических потерь наблюдается максимум при некоторой температуре, характерной для данного вещества. При этой температуре время релаксации частиц диэлектрика примерно совпадает с периодом изменения приложенного переменного электрического поля. Если температура такова, что время релаксации частиц значительно больше полупериода изменения приложенного переменного напряжения, то тепловое движение частиц будет менее интенсивным, и потери уменьшатся. Если температура такова, что время релаксации частиц значительно меньше полупериода изменения напряжения, то интенсивность теплового движения будет больше, связь между частицами уменьшится, в результате чего потери также снизятся.

Диэлектрические потери, наблюдаемые в сегнетоэлектриках, связаны с явлением спонтанной поляризации. Поэтому потери в сегнетоэлектриках значительны при температурах ниже точки Кюри, когда имеет место спонтанная поляризация. При температурах выше точки Кюри потери в сегнетоэлектриках уменьшаются. Электрическое старение сегнетоэлектрика со временем сопровождается некоторым уменьшением потерь.

К диэлектрическим потерям, обусловленным поляризацией, следует отнести также так называемые резонансные потери, проявляющиеся в диэлектриках при световых частотах. Этот вид потерь с особой четкостью наблюдается в некоторых газах при строго определенной частоте и выражается в интенсивном поглощении энергии электрического поля.

Резонансные потери возможны и в твердых веществах, если частота вынужденных колебаний, вызываемых электрическим полем, совпадает с частотой собственных колебаний частиц твердого вещества. Наличие максимума в частотной зависимости tgδ характерно также и для резонансного механизма потерь, однако в данном случае температура на положение максимума не влияет.

Диэлектрические потери, обусловленные сквозной электропроводностью, обнаруживаются в диэлектриках, имеющих заметную электропроводность, объемную или поверхностную. Тангенс угла диэлектрических потерь в этом случае может быть вычислен по формуле:

17ef675.gif (4.14)

где f  частота, Гц;

b52265.gif  удельное электрическое сопротивление, Омм.

Диэлектрические потери этого вида не зависят от частоты поля, tgδ уменьшается с увеличением частоты по гиперболическому закону.

Диэлектрические потери, обусловленные электропроводностью, возрастают с ростом температуры по экспоненциальному закону:

a5ed25e5.gif (4.15)

где A, b  постоянные материала, или в соответствии с приближенным выражением

e3b739d5.gif (4.16)

где Pt  потери при температуре t°С;

Р1  потери при температуре 0°С;

757099f6.gif  постоянная материала, тангенс угла диэлектрических потерь в зависимости от температуры изменяется по тому же закону, который использован для аппроксимации температурной зависимости Р, так как температурным изменением емкости можно пренебречь.

Ионизационные диэлектрические потери свойственны диэлектрикам в газообразном состоянии. Ионизационные потери проявляются в неоднородных электрических полях при напряженностях, превышающих значение, соответствующее началу ионизации данного газа.

Ионизационные потери могут быть вычислены по формуле:

922e50fa.gif (4.17)

где a1  постоянный коэффициент;

f  частота поля, Гц;

U  приложенное напряжение, В;

U0  напряжение, соответствующее началу ионизации, В.

Формула справедлива при U>U0 и линейной зависимости тангенса угла диэлектрических потерь от напряженности электрического поля. Ионизационное напряжение U0 зависит от давления, при котором находится газ, поскольку развитие ударной ионизации молекул связано с длиной свободного пробега носителей заряда. С увеличением давления газа величина напряжения начала ионизации возрастает.

Диэлектрические потери, обусловленные неоднородностью структуры, наблюдаются в слоистых диэлектриках из пропитанной бумаги и ткани, в пластмассах с наполнителем, в пористой керамике, в производных слюды  миканитах, микалексе и т.д.

Ввиду разнообразия структуры неоднородных диэлектриков и особенностей содержащихся в них компонентов не существует общей формулы расчета диэлектрических потерь.

Для наглядности основные сведения об особенностях различных видов диэлектрических потерь сведены в таблицу 4.2.

Таблица 4.2 — Классификация потерь в диэлектриках

Диэлектрические потери

Главные особенности

Виды диэлектриков

Обусловленные поляризацией:

спонтанной

Велики: выше точки Кюри наблюдается резкое уменьшение

Сегнетоэлектрики

релаксационной (дипольные и ионные)

Наличие максимума тангенса угла потерь, зависящего от температуры и частоты

Дипольные жидкие и твердые диэлектрики, ионные с неплотной упаковкой

резонансной

Наличие резко выраженного максимума при некоторой частоте (выше 1013 Гц),

положение которого не

зависит от температуры

Все виды диэлектриков

Продолжение таблицы 4.2

Диэлектрические потери

Главные особенности

Виды диэлектриков

Обусловленные электропроводностью

Независимость потерь от частоты (тангенс угла потерь с частотой снижается по гиперболе) и заметное возрастание с возрастанием температуры

Жидкие и твердые

диэлектрики с большой электропроводностью

Ионизационные

Наблюдаются при напряжениях выше ионизационного

Газообразные диэлектрики и твердые с

газовыми включениями

Обусловленные неоднородностью структуры

Сложная зависимость потерь от компонентов, входящих в состав диэлектрика и

случайных примесей

Неоднородные

диэлектрики

4.3 Диэлектрические потери в газах

Диэлектрические потери в газах при напряженностях поля, лежащих ниже значения, необходимого для развития ударной ионизации газа, очень малы. В этом случае газ можно практически рассматривать как идеальный диэлектрик.

Источником диэлектрических потерь газа может быть в основном только электропроводность, так как ориентация дипольных молекул газа при их поляризации не сопровождается диэлектрическими потерями.

Как известно, все газы отличаются весьма малой электропроводностью, и угол диэлектрических потерь в связи с этим будет ничтожно мал, особенно при высоких частотах. Величина тангенса угла диэлектрических потерь может быть вычислена по формуле (4.14).

Объемное удельное сопротивление газов  порядка 1016 Омм, диэлектрическая проницаемость близка к единице и тангенс угла диэлектрических потерь на промышленной частоте менее 410-8.

При высоких напряжениях и неоднородном поле, когда напряженность в отдельных местах превзойдет некоторое критическое значение, молекулы газа ионизируются, вследствие чего в газе возникают потери на ионизацию. По возрастанию тангенса угла диэлектрических потерь с увеличением напряжения можно судить о наличии газовых включений в твердой изоляции (рисунок 4.3).

Кривую tgδ=f(U) часто называют кривой ионизации. При высоких частотах ионизация потери в газах возрастает настолько, что явление ионизации может привести к разогреву и разрушению изделий с газовой изоляцией, если напряжение превышает U0.

Возникновение ионизации газа, заполняющего закрытые поры в твердой изоляции, нередко приводит к такому же разрушению. Ионизация воздуха сопровождается образованием озона и окислов азота, что вызывает химическое разложение органической изоляции, содержащей газовые включения.

ec041c38.png

Рисунок 4.3 — Изменение tgδ в зависимости от напряжения

для изолятора с воздушными включениями

На линиях электропередач высокого напряжения потери на ионизацию воздуха у поверхности проводов (явление короны) снижают к.п.д. линии.

Характеристики конденсаторов

Помогите проекту. Поделитесь с друзьями.

Ранее мы уже рассмотрели принцип работы и маркировку многих типов конденсаторов. Однако настоящий электронщик должен знать следующие характеристики конденсаторов: допустимое напряжение, классы точности, температурный коэффициент емкости и тангенс угла потерь. Понимание указанных характеристик позволяет сделать выбор и применить лучший из имеющихся накопителей, что благоприятно скажется в целом на работе электронного устройства.

Основные характеристики конденсаторов

Допустимое напряжение является очень важным параметром любого конденсатора и его нельзя превышать, иначе произойдет пробой диэлектрика и накопитель придет в непригодность. На корпусе указывается всегда величина максимального допустимого напряжения. Поэтому начинающих радиолюбителей такое обозначение вводит в заблуждения, поскольку в розетке напряжение 230 В, то казалось бы, что напряжения накопителя 300 В вполне достаточно. Однако это не так. Так как 230 В – это действующее напряжение, а диэлектрик может пробиться от мгновенного амплитудного значения, которое в 1,41 раза больше действующего и равно 230×1,41 = 324 В плюс допуск отклонения 10 % от номинального значения в сторону увеличения, нормированный ГОСТом, и того получим 324×0,1+324 = 356 В. Поэтому допустимое напряжение должно быть не ниже 360 В.

Характеристики конденсаторов

Стандартные значения емкости конденсаторов

Если взять любой радиоэлектронный прибор, например, резистор, диод, транзистор, стабилитрон и снять его характеристики либо измерить параметры высокоточным измерительным прибором, то они будут иметь некоторые отклонения от заявленных номинальных значений. Такое отклонение от указанных параметров вызвано технологическим процессом и нормируется производителем. Дело в том, что на изготовление любого устройства или его отдельного компонента влияет много факторов, которые невозможно учесть и скомпенсировать. Даже лист бумаги, формата А4, имеет некоторые отклонения от заданных размеров, но тем не менее это никак не сказывается на их применении.

Аналогично обстоят дела и с емкостью. Если измерить ее в нескольких накопителей одинакового номинала, то можно заметить небольшую разницу. Эта разница строго нормирована и называется допустимым отклонением емкости от номинального значения. Она измеряется в процентах, значения которых соответствуют классам точности.

Классы точности конденсаторов

В зависимости от класса точности и допустимого отклонения производятся стандартные значения емкости, то есть стандартные номиналы конденсаторов. Емкость в приведенной ниже таблице исчисляется пикофарадоми. Любое значение из таблицы может быть умножено на 0,1 или 1 или 10 и т.д.

Номиналы конденсаторов

Температурный коэффициент емкости

Протекание электрического тока через любой радиоэлектронный элемент вызывает его нагрев, ввиду неизбежного наличия сопротивления. Чем больше ток и выше сопротивление, тем интенсивнее нагревается прибор. Такое явление в большинстве случаев является вредным и может привести к изменению параметров схемы, а соответственно и нарушить режим работы всего устройства. Поэтому нагрев радиоэлектронных элементов всегда учитывается при проектировании изделия. Характеристики конденсаторов также склонны изменятся с изменением температуры и с этим обязательно нужно считаться. Для этого введен температурный коэффициент емкости, сокращенно ТКЕ.

ТКЕ показывает, насколько отклоняется емкость конденсатора от номинального значения с ростом температуры. Номинальное значение емкости накопителя приводится для температуры окружающей среды +20 С.

Рост температуры может вызвать как рост емкости, так и ее уменьшение. В зависимости от этого различают конденсаторы с положительным и отрицательным температурным коэффициентом емкости.

Следует знать, чем меньше значение ТКЕ, тем более стабильными характеристиками обладает конденсатор. Особое внимание уделяют ТКЕ разработчик измерительного оборудования высокого класса точности, где критичны значительные отклонения характеристик любого радиоэлектронного элемента.

Тангенс угла потерь

Потери, неизбежно возникающие при работе конденсатора, главным образом определяются свойствами диэлектрика, расположенного между обкладками накопителя, и характеризуются тангенсом угла потерь tg δ. Производители стремятся снизить значение угла tg δ и за счет этого улучшить характеристики конденсаторов. Поэтому наибольшее применение получила специальная керамика, обладающая минимальным тангенсом угла потерь. Обратной величиной тангенса угла потерь конденсатора является добротность, равная QC=1/tgδ. Конденсаторы высокого качества обладают добротностью свыше тысячи единиц.

Помогите проекту. Поделитесь с друзьями.

Еще статьи по данной теме

  • Замена электролитического конденсатора
  • Конденсаторы | Принцип работы и маркировка конденсаторов
  • Емкостной делитель напряжения
  • Законы Кирхгофа простыми словами

Число потерь в газообразных веществах

Так как у газообразных веществ значение электропроводности очень маленькое, то и число потерь диэлектрических в них мало.

Когда происходит поляризация газообразных молекул, диэлектрических потерь при этом не происходит. В данном случае используется зависимость под названием кривая ионизации. Эта зависимость показывает, что если тангенс δ возрастает вместе с возрастанием напряжения, то это является доказательством того, что в таком случае в изоляции есть включения газа. Если ионизация значительна, то и потери газа тоже, а это может привести к тому, что изоляция разогреется и разрушится.2

Поэтому очень важным при изготовлении изоляции является избавление от вкраплений газа. Для того чтобы этого достичь, применяют специальную обработку. Она включает сушку изоляции в состоянии вакуума, после чего все поры заполняет компаунд, находящийся под давлением. Следующим этапом является обкатка.
При ионизации возникает озон и окислы азота, что ведет к разрушению органической изоляции. Если эффект ионизации появляется там, где поля неравномерны, то он ведет к существенному снижению коэффициента полезного действия при передаче (это бывает на линии электропередач).

Что способствует повышению диэлектрических потерь

Норма диэлектрических потерь прописывается в инструкции к определенному прибору. Есть факторы, вызывающие колебания и отклонения от нормы (обычно это повышение). Различают несколько типов:

  • за чет электропроводности сквозного типа;
  • ионизирующие;
  • резонансные;
  • обусловленные поляризацией.

Если частотный и температурный график зависимости понятен интуитивно, то дело обстоит иначе с другими факторами, приводящими к негативному явлению. Обратите внимание, что нагревание трансформаторного масла приводит к более интенсивному смещению, иногда даже смещаются заряды диэлектрика. При стабильных низких показателях температуры вязкость не меняется, следовательно, нет смещения диполей.

А вот увеличение частоты обуславливает улучшенную проводимость. Показатели тока емкостного могут смещать диполи, при больших показателях уменьшается трение. Рост угла вызывает и проявление влаги в любом виде (это может быть и газообразное состояние). Приводит к повышению показателя ионизация, при этом увеличивается рост напряжения.

Где выполняется расчет?

Генерация электрической энергии

Расчет потерь электроэнергии в электрических сетях выполняется по следующим направлениям:

  1. Для предприятий, генерирующих энергию и отдающих в сеть. Уровень зависит от технологии производства, правильности определения собственных нужд, наличия технических и коммерческих учетов. Потери генерации ложатся на коммерческие организации (включаются в стоимость) или добавляются в нормативы и фактические величины на районы или предприятия электрических сетей.
  2. Для высоковольтной сети. Передача на дальние расстояния сопровождается высоким уровнем потерь электроэнергии в линиях и силовом оборудовании подстанций 220/110/35/10 кВ. Рассчитывается путем определения норматива, а в более совершенных системах через приборы электронного учета и автоматизированных систем.
  3. Распределительные сети, где происходит разделение потерь на коммерческие и технические. Именно в этой области сложно прогнозировать уровень величины из-за фактора сложности обвязки абонентов современными системами учета. Потери при передаче электроэнергии рассчитываются по принципу поступило за минусом платы за потребленную электрическую энергию. Определение технической и коммерческой части выполняется через норматив.

Появление диэлектрических потерь в твердом диэлектрике

Возникновение потерь в твердом диэлектрике напрямую связано с его характеристиками – структурой, составом и наличием поляризации. К примеру, в сере, полистрироле и парафине совсем нет диэлектрических потерь, а это означает, что могут широко применяться как высокочастотный диэлектрик.

Каменная соль, кварц, слюда и некоторые другие диэлектрики из числа неорганических в связи с поляризацией и таким качеством, как сквозная электропроводность, характеризуются наличием малой величины этого типа потерь. При этом значение диэлектрических потерь не находится в зависимости с частотой, но находятся в прямой зависимости от температуры.

Для мрамора, керамики и других кристаллических диэлектриков характерно наличие потерь, обусловленное наличием в их составе примесей полупроводников – это может быть вода, газ, углерод и др. У этих материалов такое интересное свойство, что потери напрямую связаны с условиями окружающей среды и их величина для одного материала может меняться в зависимости от изменения окружающих факторов.

Виды диэлектрических потерь

В зависимости от электрических свойств различных видов диэлектриков различают следующие виды диэлектрических потерь, сопровождающихся нагревом диэлектрика:

  • ионизационные потери, наблюдаемые в газах;
  • релаксационные потери в жидких (вязких) диэлектриках, в результате релаксационной поляризации;
  • рассеяние в веществах, имеющих дипольную поляризацию;
  • поляризационное рассеивание в веществах, имеющих сквозную электропроводность;
  • высокочастотные резонансные потери;
  • диэлектрические потери, вызванные неоднородностью структуры твердых диэлектриков.

Диэлектрические вещества по-разному ведут себя при различных температурах, при постоянном или переменном токе. Максимумы потерь происходят при достижении определённого порога температуры. Этот порог индивидуален для каждого вещества. Тангенс угла δ зависит также от приложенного напряжения (рис. 4).

Зависимость тангенса угла  от напряженияРис. 4. Зависимость тангенса угла  от напряжения

Факторы, которые увеличивают тангенс угла диэлектрических потерь

Специалисты выделяют несколько факторов, которые приводят к увеличению тангенса. На первый взгляд они кажутся несущественными, но в итоге обуславливают эффективность работы трансформатора.

Наличие мыла в маслах

Мыло в маслах, которые используются для смазки обмоток трансформатора, приводят к изменению численного показателя. Это объясняется тем, что мыло провоцирует дополнительное увлажнение, приводящие к снижению удельного сопротивления. Нюансы увеличивают проводимость, что влияет на рост тангенса.

Образования кислых продуктов старения

Кислотные продукты старения вызывают порчу вторичной и первичной обмотки. В свою очередь уменьшается проводимость, образуются дополнения на кристаллических решетках. Изменение в худшую сторону физико-технических характеристик диэлектрика приводит у увеличению потерь.

Характеристика диэлектрических потерь в жидких диэлектриках

Здесь значение потерь напрямую связано с составом. Если жидкость нейтральна и не содержит примесей, то и значение потерь стремится к нулю в связи с низкой электропроводностью.

Для технических целей используются жидrости с полярностью или представляющие собой смесь нейтральной и дипольной (сюда относятся компаунды). У них значение потерь существенно выше.

Потери в полярных жидкостях обусловлены таким свойством, как вязкость и носят название дипольных, так как их определяет дипольная поляризация. При этом при маленькой вязкости потери малы, с ее возрастанием – потери возрастают.

Кроме того, в жидкостях присутствует сложная зависимость диэлектрических потерь от температурного режима. При возрастании температуры тангенс δ возрастает до максимального значения, после чего снова падает до минимального и вновь возрастает, что связано с изменением электропроводности под действием температуры.

Чем измерить?

Рассчитывать потери диэлектриков по формуле не очень удобно. Часто величину tg производители определяют опытным путём и указывают на упаковках или в справочниках.

Существуют специальные измерительные приборы, такие как «ИПИ – 10» (производитель Tettex), «Тангенс – 3М» или измеритель «Ш2», позволяющие с высокой точностью определить уровень рассеивания в диэлектриках либо найти тангенс угла рассеяния. Устройства довольно компактны и просты в работе. С их помощью можно исследовать свойства твёрдых и жидких веществ на предмет диэлектрических потерь.

Добавочные потери

Добавочные потери pд. К этой группе относят потери, вызванные различными вторичными явлениями при нагрузке машины. Поэтому указанные потери, зависящие от тока нагрузки, называют иногда также добавочными потерями при нагрузке.

В машинах постоянного тока одна часть рассматриваемых потерь возникает вследствие искажения кривой магнитного поля в воздушном зазоре при нагрузке под влиянием поперечной реакции якоря. В результате этого магнитный поток распределяется по зубцам и сечению спинки якоря неравномерно: с одного края полюсного наконечника индукция в зубцах и спинке якоря уменьшается, а с другого края увеличивается. Такое неравномерное распределение потока вызывает увеличение магнитных потерь, подобно тому как неравномерное распределение тока в проводнике (например, в результате поверхностного эффекта) вызывает увеличение электрических потерь. Вследствие такого неравномерного распределения потока увеличиваются также поверхностные потери в полюсных наконечниках. При наличии компенсационной обмотки рассмотренная часть добавочных потерь практически отсутствует.

Добавочные потери в машине постоянного тока

Рисунок 2. Магнитные потоки рассеяния секции

Другая часть добавочных потерь в машинах постоянного тока связана с коммутацией. При изменении во времени потоков рассеяния коммутируемых секций (смотрите рисунок 2) в проводниках обмотки индуктируются вихревые токи. Добавочный ток коммутации также вызывает дополнительные потери. Существуют также другие причины возникновения добавочных потерь (вихревые токи в крепежных деталях и тому подобное).

Вследствие сложной природы добавочных потерь формулы для их вычисления получаются сложными и, кроме того, не особенно точными. Экспериментальное определение этих потерь также затруднительно. Поэтому на практике добавочные потери чаще всего оценивают на основе опытных данных в виде определенного процента от номинальной мощности. Согласно ГОСТ 11828-86, эти потери для машин постоянного тока при номинальной нагрузке принимаются: при отсутствии компенсационной обмотки равными 1,0% и при наличии компенсационной обмотки равными 0,5% от отдаваемой мощности для генератора и подводимой мощности двигателя. Для других нагрузок эти потери пересчитываются пропорционально квадрату тока нагрузки.

Все виды добавочных потерь, не связанные непосредственно с электрическими процессами в цепях обмоток машины, покрываются за счет механической мощности на валу машины.

Механические потери

Механические потери pмх состоят из 1) потерь в подшипниках, 2) потерь на трение щеток о коллектор или контактные кольца и 3) вентиляционных потерь, которые включают в себя потери на трение частей машины о воздух и другие потери, связанные с вентиляцией машины (мощность кинетической энергии отходящего воздуха и потери в вентиляторе). В ряде случаев электрические машины охлаждаются не воздухом, а водородом или водой, и соответствующие потери также относят к вентиляционным.

Потери в подшипниках pподш вычисляют по соотношениям, которые рассматриваются в курсах деталей машин и проектирования электрических машин. Эти потери зависят от типа подшипников (качения или скольжения), от состояния трущихся поверхностей, вида смазки и так далее. Важно подчеркнуть, что при работе данной машины эти потери зависят только от скорости вращения и не зависят от нагрузки.

Потери на трение щеток могут быть вычислены по формуле

pтр.щ = kтр × fщ × Sщ × vк, (1)

где kтр – коэффициент трения щеток о коллектор или контактные кольца (kтр = 0,15 – 0,3); fщ – удельное (на единицу площади) давление на щетку; Sщ – контактная поверхность всех щеток; vк – окружная скорость коллектора или контактных колец.

Потери на вентиляцию pвент зависят от конструкции машины и рода вентиляции. Подробности расчета этих потерь рассматриваются в курсах проектирования электрических машин. В случае если вентиляция осуществляется не встроенным в машину, а отдельно стоящим вентилятором, потери на вентиляцию машины включают в себя потребляемую мощность привода вентилятора.

В самовентилируемых машинах со встроенным центробежным вентилятором потери на вентиляцию в ваттах иногда вычисляются приближенно по следующей эмпирической формуле:

pвсит = 1,75 × Q × v², (2)

где Q – количество воздуха, прогоняемого через машину, м³/с; v – окружная скорость вентиляционных крыльев по их внешнему диаметру, м/с.

Так как Q также пропорционально v, то из выражения (2) следует, что потери pвент пропорциональны третьей степени скорости вращения машины.

Общие механические потери

pмх = pподш + pвент + pтр.щ (3)

Как следует из изложенного, в каждой данной машине потери pмх зависят только от скорости вращения и не зависят от нагрузки. В машинах постоянного тока мощностью 10 – 500 кВт потери pмх составляют соответственно 2 – 0,5% от номинальной мощности машины.

( 1 оценка, среднее 5 из 5 )

Рейтинг
( 1 оценка, среднее 5 из 5 )
Загрузка ...